Leonardo M. Corrêa , Eduardo Ortega , Arturo Ponce , Mônica A. Cotta , Daniel Ugarte
{"title":"High precision orientation mapping from 4D-STEM precession electron diffraction data through quantitative analysis of diffracted intensities","authors":"Leonardo M. Corrêa , Eduardo Ortega , Arturo Ponce , Mônica A. Cotta , Daniel Ugarte","doi":"10.1016/j.ultramic.2024.113927","DOIUrl":null,"url":null,"abstract":"<div><p>The association of scanning transmission electron microscopy (STEM) and detection of a diffraction pattern at each probe position (so-called 4D-STEM) represents one of the most promising approaches to analyze structural properties of materials with nanometric resolution and low irradiation levels. This is widely used for texture analysis of materials using automated crystal orientation mapping (ACOM). Herein, we perform orientation mapping in InP nanowires exploiting precession electron diffraction (PED) patterns acquired by an axial CMOS camera. Crystal orientation is determined at each probe position by the quantitative analysis of diffracted intensities minimizing a residue comparing experiments and simulations in analogy to x-ray structural refinement. Our simulations are based on the two-beam dynamical diffraction approximation and yield a high angular precision (∼0.03°), much lower than the traditional ACOM based on pattern matching algorithms (∼1°). We anticipate that simultaneous exploration of both spot positions and high precision crystal misorientation will allow the exploration of the whole potentiality provided by PED-based 4D-STEM for the characterization of deformation fields in nanomaterials.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"259 ","pages":"Article 113927"},"PeriodicalIF":2.1000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultramicroscopy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304399124000068","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
The association of scanning transmission electron microscopy (STEM) and detection of a diffraction pattern at each probe position (so-called 4D-STEM) represents one of the most promising approaches to analyze structural properties of materials with nanometric resolution and low irradiation levels. This is widely used for texture analysis of materials using automated crystal orientation mapping (ACOM). Herein, we perform orientation mapping in InP nanowires exploiting precession electron diffraction (PED) patterns acquired by an axial CMOS camera. Crystal orientation is determined at each probe position by the quantitative analysis of diffracted intensities minimizing a residue comparing experiments and simulations in analogy to x-ray structural refinement. Our simulations are based on the two-beam dynamical diffraction approximation and yield a high angular precision (∼0.03°), much lower than the traditional ACOM based on pattern matching algorithms (∼1°). We anticipate that simultaneous exploration of both spot positions and high precision crystal misorientation will allow the exploration of the whole potentiality provided by PED-based 4D-STEM for the characterization of deformation fields in nanomaterials.
期刊介绍:
Ultramicroscopy is an established journal that provides a forum for the publication of original research papers, invited reviews and rapid communications. The scope of Ultramicroscopy is to describe advances in instrumentation, methods and theory related to all modes of microscopical imaging, diffraction and spectroscopy in the life and physical sciences.