{"title":"The development of computer-aided planning principles for multiproduct machining processes","authors":"Sergey Mitin, Petr Bochkarev","doi":"10.30987/2223-4608-2024-16-22","DOIUrl":null,"url":null,"abstract":"The scientific principles of improving the system of automated planning of technical processes in the conditions of multiproduct machining industries are viewed. The study of modern approaches to automation of design and implementation of machining processes taking into account the production situation, is carried out. The use of the system of automated planning of multiproduct machining processes is justified, because its basic procedure includes a possibility of real-time interaction between subsystems design and implementation of technical processes, where the key place is occupied by a database on the technological capabilities of equipment and tooling. The interrelation of the system of automated planning of multiproduct machining processes with subsystems for assessing production manufacturability, monitoring technological equipment state, control and measuring procedures and assembly, is shown. The principle of designing multiproduct machining processes, generated for a given range of parts, taking into account the condition and capabilities of the production system, is presented. It is proposed to use the value of the total manufacturing time of a given range of parts as a generalized criterion for the efficiency of the production system. Ranking technique of design procedures according to the degree of influence of the decisions made on the generalized criterion of efficiency of the production system, is described. A model, based on genetic algorithms, is characterized, allowing the system being automatically adjusted to the conditions, changing during the design process. As a result, the efficiency of technological preparation of diversified production increases due to the rational distribution of manufacturing process for machining operation of parts to existing production facilities. The development of the work is aimed at increasing the level of design automation of machining processes and obtaining feedback on the current state of the production system.","PeriodicalId":21570,"journal":{"name":"Science intensive technologies in mechanical engineering","volume":"10 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science intensive technologies in mechanical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30987/2223-4608-2024-16-22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The scientific principles of improving the system of automated planning of technical processes in the conditions of multiproduct machining industries are viewed. The study of modern approaches to automation of design and implementation of machining processes taking into account the production situation, is carried out. The use of the system of automated planning of multiproduct machining processes is justified, because its basic procedure includes a possibility of real-time interaction between subsystems design and implementation of technical processes, where the key place is occupied by a database on the technological capabilities of equipment and tooling. The interrelation of the system of automated planning of multiproduct machining processes with subsystems for assessing production manufacturability, monitoring technological equipment state, control and measuring procedures and assembly, is shown. The principle of designing multiproduct machining processes, generated for a given range of parts, taking into account the condition and capabilities of the production system, is presented. It is proposed to use the value of the total manufacturing time of a given range of parts as a generalized criterion for the efficiency of the production system. Ranking technique of design procedures according to the degree of influence of the decisions made on the generalized criterion of efficiency of the production system, is described. A model, based on genetic algorithms, is characterized, allowing the system being automatically adjusted to the conditions, changing during the design process. As a result, the efficiency of technological preparation of diversified production increases due to the rational distribution of manufacturing process for machining operation of parts to existing production facilities. The development of the work is aimed at increasing the level of design automation of machining processes and obtaining feedback on the current state of the production system.