{"title":"SIANet: 3D object detection with structural information augment network","authors":"Jing Zhou, Tengxing Lin, Zixin Gong, Xinhan Huang","doi":"10.1049/cvi2.12272","DOIUrl":null,"url":null,"abstract":"<p>3D object detection technology from point clouds has been widely applied in the field of automatic driving in recent years. In practical applications, the shape point clouds of some objects are incomplete due to occlusion or far distance, which means they suffer from insufficient structural information. This greatly affects the detection performance. To address this challenge, the authors design a Structural Information Augment (SIA) Network for 3D object detection, named SIANet. Specifically, the authors design a SIA module to reconstruct the complete shapes of objects within proposals for enhancing their geometric features, which are further fused into the spatial feature of the object for box refinement to predict accurate detection boxes. Besides, the authors construct a novel Unet-liked Context-enhanced Transformer backbone network, which stacks Context-enhanced Transformer modules and an upsampling branch to capture contextual information efficiently and generate high-quality proposals for the SIA module. Extensive experiments show that the authors’ well-designed SIANet can effectively improve detection performance, especially surpassing the baseline network by 1.04% mean Average Precision (mAP) gain in the KITTI dataset and 0.75% LEVEL_2 mAP gain in the Waymo dataset.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 5","pages":"682-695"},"PeriodicalIF":1.5000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12272","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12272","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
3D object detection technology from point clouds has been widely applied in the field of automatic driving in recent years. In practical applications, the shape point clouds of some objects are incomplete due to occlusion or far distance, which means they suffer from insufficient structural information. This greatly affects the detection performance. To address this challenge, the authors design a Structural Information Augment (SIA) Network for 3D object detection, named SIANet. Specifically, the authors design a SIA module to reconstruct the complete shapes of objects within proposals for enhancing their geometric features, which are further fused into the spatial feature of the object for box refinement to predict accurate detection boxes. Besides, the authors construct a novel Unet-liked Context-enhanced Transformer backbone network, which stacks Context-enhanced Transformer modules and an upsampling branch to capture contextual information efficiently and generate high-quality proposals for the SIA module. Extensive experiments show that the authors’ well-designed SIANet can effectively improve detection performance, especially surpassing the baseline network by 1.04% mean Average Precision (mAP) gain in the KITTI dataset and 0.75% LEVEL_2 mAP gain in the Waymo dataset.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf