{"title":"A principal direction-guided local voxelisation structural feature approach for point cloud registration","authors":"Chenyang Li, Yansong Duan","doi":"10.1049/cvi2.70000","DOIUrl":null,"url":null,"abstract":"<p>Point cloud registration is a crucial aspect of computer vision and 3D reconstruction. Traditional registration methods often depend on global features or iterative optimisation, leading to inefficiencies and imprecise outcomes when processing complex scene point cloud data. To address these challenges, the authors introduce a principal direction-guided local voxelisation structural feature (PDLVSF) approach for point cloud registration. This method reliably identifies feature points regardless of initial positioning. Approach begins with the 3D Harris algorithm to extract feature points, followed by determining the principal direction within the feature points' radius neighbourhood to ensure rotational invariance. For scale invariance, voxel grid normalisation is utilised to maximise the point cloud's geometric resolution and make it scale-independent. Cosine similarity is then employed for effective feature matching, identifying corresponding feature point pairs and determining transformation parameters between point clouds. Experimental validations on various datasets, including the real terrain dataset, demonstrate the effectiveness of our method. Results indicate superior performance in root mean square error (RMSE) and registration accuracy compared to state-of-the-art methods, particularly in scenarios with high noise, limited overlap, and significant initial pose rotation. The real terrain dataset is publicly available at https://github.com/black-2000/Real-terrain-data.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.70000","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.70000","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Point cloud registration is a crucial aspect of computer vision and 3D reconstruction. Traditional registration methods often depend on global features or iterative optimisation, leading to inefficiencies and imprecise outcomes when processing complex scene point cloud data. To address these challenges, the authors introduce a principal direction-guided local voxelisation structural feature (PDLVSF) approach for point cloud registration. This method reliably identifies feature points regardless of initial positioning. Approach begins with the 3D Harris algorithm to extract feature points, followed by determining the principal direction within the feature points' radius neighbourhood to ensure rotational invariance. For scale invariance, voxel grid normalisation is utilised to maximise the point cloud's geometric resolution and make it scale-independent. Cosine similarity is then employed for effective feature matching, identifying corresponding feature point pairs and determining transformation parameters between point clouds. Experimental validations on various datasets, including the real terrain dataset, demonstrate the effectiveness of our method. Results indicate superior performance in root mean square error (RMSE) and registration accuracy compared to state-of-the-art methods, particularly in scenarios with high noise, limited overlap, and significant initial pose rotation. The real terrain dataset is publicly available at https://github.com/black-2000/Real-terrain-data.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf