{"title":"TomoSAR 3D reconstruction: Cascading adversarial strategy with sparse observation trajectory","authors":"Xian Zhu, Xiaoqin Zeng, Yuhua Cong, Yanhao Huang, Ziyan Zhu, Yantao Luo","doi":"10.1049/cvi2.70001","DOIUrl":null,"url":null,"abstract":"<p>Synthetic aperture radar tomography (TomoSAR) has shown significant potential for the 3D Reconstruction of buildings, especially in critical areas such as topographic mapping, urban planning, and disaster monitoring. In practical applications, the constraints of observation trajectories frequently lead to the acquisition of a limited dataset of sparse SAR images, presenting challenges for TomoSAR 3D Reconstruction and affecting its signal-to-noise ratio and elevation resolution performance. The study introduces a cascade adversarial strategy based on the Conditional Generative Adversarial Network (CGAN), optimised explicitly for sparse observation trajectories. In the preliminary phase of the CGAN, the U-Net architecture was employed to capture more global information and enhance image detail recovery capability, which is subsequently utilised in the cascade refinement network. The ResNet34 residual network in the advanced network stage was adopted to bolster feature extraction and image generation capabilities further. Based on experimental validation performed on the curated TomoSAR 3D super-resolution dataset tailored for buildings, the findings reveal that the methodology yields a notable enhancement in image quality and accuracy compared to other techniques.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.70001","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.70001","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Synthetic aperture radar tomography (TomoSAR) has shown significant potential for the 3D Reconstruction of buildings, especially in critical areas such as topographic mapping, urban planning, and disaster monitoring. In practical applications, the constraints of observation trajectories frequently lead to the acquisition of a limited dataset of sparse SAR images, presenting challenges for TomoSAR 3D Reconstruction and affecting its signal-to-noise ratio and elevation resolution performance. The study introduces a cascade adversarial strategy based on the Conditional Generative Adversarial Network (CGAN), optimised explicitly for sparse observation trajectories. In the preliminary phase of the CGAN, the U-Net architecture was employed to capture more global information and enhance image detail recovery capability, which is subsequently utilised in the cascade refinement network. The ResNet34 residual network in the advanced network stage was adopted to bolster feature extraction and image generation capabilities further. Based on experimental validation performed on the curated TomoSAR 3D super-resolution dataset tailored for buildings, the findings reveal that the methodology yields a notable enhancement in image quality and accuracy compared to other techniques.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf