{"title":"Altitudinal Appraisal Of Land Use Land Cover And Surface Temperature Change In The Satluj Basin, India","authors":"Pankaj Kumar, Swati Thakur, Surajmal Junawa, Subhash Anand","doi":"10.24057/2071-9388-2023-2958","DOIUrl":null,"url":null,"abstract":"The land use change has affected nearly 32% of the global landscape from 1960 to 2019. Several studies have examined the impacts of land use land cover (LULC) on the surface temperature. Still, the spatiotemporal variation of LULC and LST with altitude is a less researched area. In the current study, we assess the LULC dynamics and its relation to altitudinal LST in the Himalayan Satluj River basin in Himachal Pradesh across the altitudinal range of 332 to 6558 meters. LULC, LST, NDVI, and NDMI were derived from Landsat data for 1980-2020. The spatial pattern was analyzed using Support Vector Machine (SVM) and a mono-window algorithm. The results of LULC denote that snow covered area (SCA) have decreased by nearly 56.19% since 1980 and vegetation cover has increased. However, a decline in vegetation density is pronounced at the same time. The mean surface temperature of the Satluj basin has amplified by 6°C (0.25°C/year) from 1996 to 2020. Mostly Zone 3 and 4 are under high hilly and temperate dry regions in Lahaul Spiti and Kinnaur district of Himachal Pradesh. The most important sign is that the mean surface temperature for Zone 3 (3000m-4500m) and Zone 4 (above 4500m) was the highest increase to 6°C (0.26°C/year) and 8°C (0.31°C/year) from 1996 to 2020. The increase in LST values is attributed to land cover dynamics precisely the decline of snow cover area and the emergence of vegetation zone at higher above the 4500 altitudes. Our study facilitates regional analysis.","PeriodicalId":37517,"journal":{"name":"Geography, Environment, Sustainability","volume":" 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geography, Environment, Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24057/2071-9388-2023-2958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
The land use change has affected nearly 32% of the global landscape from 1960 to 2019. Several studies have examined the impacts of land use land cover (LULC) on the surface temperature. Still, the spatiotemporal variation of LULC and LST with altitude is a less researched area. In the current study, we assess the LULC dynamics and its relation to altitudinal LST in the Himalayan Satluj River basin in Himachal Pradesh across the altitudinal range of 332 to 6558 meters. LULC, LST, NDVI, and NDMI were derived from Landsat data for 1980-2020. The spatial pattern was analyzed using Support Vector Machine (SVM) and a mono-window algorithm. The results of LULC denote that snow covered area (SCA) have decreased by nearly 56.19% since 1980 and vegetation cover has increased. However, a decline in vegetation density is pronounced at the same time. The mean surface temperature of the Satluj basin has amplified by 6°C (0.25°C/year) from 1996 to 2020. Mostly Zone 3 and 4 are under high hilly and temperate dry regions in Lahaul Spiti and Kinnaur district of Himachal Pradesh. The most important sign is that the mean surface temperature for Zone 3 (3000m-4500m) and Zone 4 (above 4500m) was the highest increase to 6°C (0.26°C/year) and 8°C (0.31°C/year) from 1996 to 2020. The increase in LST values is attributed to land cover dynamics precisely the decline of snow cover area and the emergence of vegetation zone at higher above the 4500 altitudes. Our study facilitates regional analysis.
期刊介绍:
Journal “GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY” is founded by the Faculty of Geography of Lomonosov Moscow State University, The Russian Geographical Society and by the Institute of Geography of RAS. It is the official journal of Russian Geographical Society, and a fully open access journal. Journal “GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY” publishes original, innovative, interdisciplinary and timely research letter articles and concise reviews on studies of the Earth and its environment scientific field. This goal covers a broad spectrum of scientific research areas (physical-, social-, economic-, cultural geography, environmental sciences and sustainable development) and also considers contemporary and widely used research methods, such as geoinformatics, cartography, remote sensing (including from space), geophysics, geochemistry, etc. “GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY” is the only original English-language journal in the field of geography and environmental sciences published in Russia. It is supposed to be an outlet from the Russian-speaking countries to Europe and an inlet from Europe to the Russian-speaking countries regarding environmental and Earth sciences, geography and sustainability. The main sections of the journal are the theory of geography and ecology, the theory of sustainable development, use of natural resources, natural resources assessment, global and regional changes of environment and climate, social-economical geography, ecological regional planning, sustainable regional development, applied aspects of geography and ecology, geoinformatics and ecological cartography, ecological problems of oil and gas sector, nature conservations, health and environment, and education for sustainable development. Articles are freely available to both subscribers and the wider public with permitted reuse.