Generation of Eco-Friendly and Disease-Resistant Channel Catfish (Ictalurus punctatus) Harboring the Alligator Cathelicidin Gene via CRISPR/Cas9 Engineering
{"title":"Generation of Eco-Friendly and Disease-Resistant Channel Catfish (Ictalurus punctatus) Harboring the Alligator Cathelicidin Gene via CRISPR/Cas9 Engineering","authors":"","doi":"10.1016/j.eng.2023.12.005","DOIUrl":null,"url":null,"abstract":"<div><p>As a precise and versatile tool for genome manipulation, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) platform holds promise for modifying fish traits of interest. With the aim of reducing transgene introgression and controlling reproduction, upscaled disease resistance and reproductive intervention in catfish species have been studied to lower the potential environmental risks of the introgression of escapees as transgenic animals. Taking advantage of the CRISPR/Cas9-mediated system, we succeeded in integrating the cathelicidin gene (<em>As</em>-<em>Cath</em>) from an alligator (<em>Alligator sinensis</em>) into the target luteinizing hormone (<em>lh</em>) locus of channel catfish (<em>Ictalurus punctatus</em>) using two delivery systems assisted by double-stranded DNA (dsDNA) and single-stranded oligodeoxynucleotides (ssODNs), respectively. In this study, high knock in (KI) efficiency (22.38%, 64/286) but low on-target events was achieved using the ssODN strategy, whereas adopting a dsDNA as the donor template led to an efficient on-target KI (10.80%, 23/213). The on-target KI of <em>As-Cath</em> was instrumental in establishing the <em>lh</em> knockout (LH<sup>–</sup>_As-Cath<sup>+</sup>) catfish line, which displayed heightened disease resistance and reduced fecundity compared with the wild-type (WT) sibling fish. Furthermore, administration of human chorionic gonadotropin (HCG) and luteinizing hormone-releasing hormone analogue (LHRHa) can restore the reproduction of the transgenic fish line. Overall, we replaced the <em>lh</em> gene with an alligator cathelicidin transgene and then administered hormone therapy to move towards complete reproductive control of disease-resistant transgenic catfish in an environmentally responsible manner. This strategy not only effectively improves consumer-valued traits but also guards against unwanted introgression, providing a breakthrough in aquaculture genetics to confine fish reproduction and prevent the establishment of transgenic or domestic genotypes in the natural environment.</p></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":null,"pages":null},"PeriodicalIF":10.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095809924000420/pdfft?md5=44370087181758a7e38b5f9f08adfffa&pid=1-s2.0-S2095809924000420-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809924000420","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
As a precise and versatile tool for genome manipulation, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) platform holds promise for modifying fish traits of interest. With the aim of reducing transgene introgression and controlling reproduction, upscaled disease resistance and reproductive intervention in catfish species have been studied to lower the potential environmental risks of the introgression of escapees as transgenic animals. Taking advantage of the CRISPR/Cas9-mediated system, we succeeded in integrating the cathelicidin gene (As-Cath) from an alligator (Alligator sinensis) into the target luteinizing hormone (lh) locus of channel catfish (Ictalurus punctatus) using two delivery systems assisted by double-stranded DNA (dsDNA) and single-stranded oligodeoxynucleotides (ssODNs), respectively. In this study, high knock in (KI) efficiency (22.38%, 64/286) but low on-target events was achieved using the ssODN strategy, whereas adopting a dsDNA as the donor template led to an efficient on-target KI (10.80%, 23/213). The on-target KI of As-Cath was instrumental in establishing the lh knockout (LH–_As-Cath+) catfish line, which displayed heightened disease resistance and reduced fecundity compared with the wild-type (WT) sibling fish. Furthermore, administration of human chorionic gonadotropin (HCG) and luteinizing hormone-releasing hormone analogue (LHRHa) can restore the reproduction of the transgenic fish line. Overall, we replaced the lh gene with an alligator cathelicidin transgene and then administered hormone therapy to move towards complete reproductive control of disease-resistant transgenic catfish in an environmentally responsible manner. This strategy not only effectively improves consumer-valued traits but also guards against unwanted introgression, providing a breakthrough in aquaculture genetics to confine fish reproduction and prevent the establishment of transgenic or domestic genotypes in the natural environment.
期刊介绍:
Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.