Zhaoyang Lu , Longlong Li , Wen Chen , Yuhao Xiao , Weilong You , Guoqiang Wu
{"title":"A ScAlN-based piezoelectric breathing mode dual-ring resonator with high temperature stability","authors":"Zhaoyang Lu , Longlong Li , Wen Chen , Yuhao Xiao , Weilong You , Guoqiang Wu","doi":"10.1016/j.mee.2024.112144","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, a scandium-doped aluminum nitride (ScAlN)-based piezoelectric breathing mode dual-ring resonator with high temperature stability is presented. The designed resonator consists of two identical rings and a coupling straight beam in between. A combination of highly doped silicon and composite structure using silicon oxide is implemented to improve the frequency-temperature stability of the resonator. The dual-ring resonator is fabricated based on a ScAlN-based thin-film piezoelectric-on‑silicon (TPoS) platform. The measurement results show that the fabricated dual-ring resonator has a loaded quality factor (<span><math><msub><mi>Q</mi><mi>l</mi></msub></math></span>) of 6889 and an insertion loss of 13.898 dB at its resonant frequency of 16.766 MHz, corresponding to a motional resistance of 395 <span><math><mi>Ω</mi></math></span>, and an unloaded quality factor (<span><math><msub><mi>Q</mi><mi>un</mi></msub></math></span>) of 8681. The resonator's <span><math><msub><mi>Q</mi><mi>un</mi></msub></math></span> is almost constant within the pressure range of less than 300 Pa, indicating a good process tolerance in the vacuum packaging process. With the aid of the passive temperature compensation, the reported resonator exhibits an overall frequency variation of less than ±70 ppm over the entire temperature range of 20 °C to 105 °C, which agrees well with the predicted value obtained by finite element method (FEM) analysis. Moreover, Allan deviations of the resonator-based oscillator frequency are collected.</p></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167931724000133","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, a scandium-doped aluminum nitride (ScAlN)-based piezoelectric breathing mode dual-ring resonator with high temperature stability is presented. The designed resonator consists of two identical rings and a coupling straight beam in between. A combination of highly doped silicon and composite structure using silicon oxide is implemented to improve the frequency-temperature stability of the resonator. The dual-ring resonator is fabricated based on a ScAlN-based thin-film piezoelectric-on‑silicon (TPoS) platform. The measurement results show that the fabricated dual-ring resonator has a loaded quality factor () of 6889 and an insertion loss of 13.898 dB at its resonant frequency of 16.766 MHz, corresponding to a motional resistance of 395 , and an unloaded quality factor () of 8681. The resonator's is almost constant within the pressure range of less than 300 Pa, indicating a good process tolerance in the vacuum packaging process. With the aid of the passive temperature compensation, the reported resonator exhibits an overall frequency variation of less than ±70 ppm over the entire temperature range of 20 °C to 105 °C, which agrees well with the predicted value obtained by finite element method (FEM) analysis. Moreover, Allan deviations of the resonator-based oscillator frequency are collected.
期刊介绍:
Microelectronic Engineering is the premier nanoprocessing, and nanotechnology journal focusing on fabrication of electronic, photonic, bioelectronic, electromechanic and fluidic devices and systems, and their applications in the broad areas of electronics, photonics, energy, life sciences, and environment. It covers also the expanding interdisciplinary field of "more than Moore" and "beyond Moore" integrated nanoelectronics / photonics and micro-/nano-/bio-systems. Through its unique mixture of peer-reviewed articles, reviews, accelerated publications, short and Technical notes, and the latest research news on key developments, Microelectronic Engineering provides comprehensive coverage of this exciting, interdisciplinary and dynamic new field for researchers in academia and professionals in industry.