Numerical investigation of energy level strategy for TMO/Si tunneling heterojunction solar cells

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Computational Electronics Pub Date : 2024-02-02 DOI:10.1007/s10825-024-02128-x
Zhongliang Gao, GuiJia Feng, Hui Zhou, Li Ding
{"title":"Numerical investigation of energy level strategy for TMO/Si tunneling heterojunction solar cells","authors":"Zhongliang Gao, GuiJia Feng, Hui Zhou, Li Ding","doi":"10.1007/s10825-024-02128-x","DOIUrl":null,"url":null,"abstract":"<p>A thin film of transition metal oxide (TMO) layer forms a heterojunction configuration with silicon (Si) via dopant-free fabrication process. However, excellent hole selective contact performance of TMO/<i>n</i>-Si heterojunction necessitates a stringent alignment of energy levels. Herein, we studied the level matching strategy of TMO/<i>n</i>-Si heterojunction with four parameters including conduction band (<i>E</i><sub>C</sub>), bandgap (<i>E</i><sub><i>g</i></sub>), Fermi level (<i>E</i><sub>F</sub>) and interface trap concentration (<i>N</i><sub>t</sub>). It is found that the electron affinity (<i>E</i><sub>a</sub>) of TMO determines the relative position of the energy level, and increasing the <i>E</i><sub>a</sub> can increase the open-circuit voltage (<i>V</i><sub>OC</sub>) from 426.0 to 742.5 mV. In addition, the energy level bending of the interface can be adjusted by the relative <i>E</i><sub>F</sub> position of TMO and <i>n</i>-Si to improve the carrier separation efficiency to increase the short-circuit current density (<i>J</i><sub>SC</sub>). Meanwhile, the higher <i>N</i><sub>t</sub> is beneficial to the carrier tunneling transport in the case of <i>E</i><sub>C</sub> of TMO being smaller than that of <i>n</i>-Si, which enhances the energy level bending of the interface and improves the solar cells performance. Finally, the MoO<sub><i>x</i></sub>/<i>n</i>-Si heterojunction solar cell is optimized to obtained the power conversion efficiency (PCE) of 21.87%.</p>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10825-024-02128-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A thin film of transition metal oxide (TMO) layer forms a heterojunction configuration with silicon (Si) via dopant-free fabrication process. However, excellent hole selective contact performance of TMO/n-Si heterojunction necessitates a stringent alignment of energy levels. Herein, we studied the level matching strategy of TMO/n-Si heterojunction with four parameters including conduction band (EC), bandgap (Eg), Fermi level (EF) and interface trap concentration (Nt). It is found that the electron affinity (Ea) of TMO determines the relative position of the energy level, and increasing the Ea can increase the open-circuit voltage (VOC) from 426.0 to 742.5 mV. In addition, the energy level bending of the interface can be adjusted by the relative EF position of TMO and n-Si to improve the carrier separation efficiency to increase the short-circuit current density (JSC). Meanwhile, the higher Nt is beneficial to the carrier tunneling transport in the case of EC of TMO being smaller than that of n-Si, which enhances the energy level bending of the interface and improves the solar cells performance. Finally, the MoOx/n-Si heterojunction solar cell is optimized to obtained the power conversion efficiency (PCE) of 21.87%.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TMO/Si 隧道异质结太阳能电池能级策略的数值研究
过渡金属氧化物(TMO)薄膜层通过无掺杂剂制造工艺与硅(Si)形成异质结。然而,要使 TMO/n-Si 异质结具有优异的空穴选择性接触性能,就必须严格对齐能级。在此,我们研究了导带(EC)、带隙(Eg)、费米级(EF)和界面阱浓度(Nt)等四个参数对 TMO/n-Si 异质结的能级匹配策略。研究发现,TMO 的电子亲和力(Ea)决定了能级的相对位置,提高 Ea 可以将开路电压(VOC)从 426.0 mV 提高到 742.5 mV。此外,还可以通过 TMO 和 n-Si 的相对 EF 位置来调整界面的能级弯曲,从而提高载流子分离效率,增加短路电流密度(JSC)。同时,在 TMO 的导电率小于 n-Si 的导电率时,较高的 Nt 有利于载流子的隧道传输,从而增强了界面的能级弯曲,提高了太阳能电池的性能。最后,经过优化的 MoOx/n-Si 异质结太阳能电池的功率转换效率(PCE)达到了 21.87%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Computational Electronics
Journal of Computational Electronics ENGINEERING, ELECTRICAL & ELECTRONIC-PHYSICS, APPLIED
CiteScore
4.50
自引率
4.80%
发文量
142
审稿时长
>12 weeks
期刊介绍: he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered. In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.
期刊最新文献
Enhanced thermoelectric performance of Zr1−xNiSnTax half-Heusler alloys: a first-principle study Theoretical prediction of the mechanical, electronic, optical and thermodynamic properties of antiperovskites A3BO (A = K, Rb and B = Au, Br) using DFT scheme: new candidate for optoelectronic devices application War strategy optimization-based methods for pattern synthesis of antenna arrays and optimization of microstrip patch antenna Estimating equivalent circuit parameters in various photovoltaic models and modules using the dingo optimization algorithm Strain engineered < Si/Si0.97C0.03 > superlattice photodetector for optoelectronic applications: a comprehensive numerical analysis and experimental verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1