{"title":"Strain engineered < Si/Si0.97C0.03 > superlattice photodetector for optoelectronic applications: a comprehensive numerical analysis and experimental verification","authors":"Moumita Chakraborty, Pradip Kumar Sadhu, Abhijit Kundu, Moumita Mukherjee","doi":"10.1007/s10825-024-02209-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a strain-modified Si/Si<sub>0.97</sub>C<sub>0.03</sub> asymmetrical superlattice exotic type (p + -i-p-n +) avalanche photodetector has been designed for applications on the infrared wavelength region. The photoelectric characteristics of the device are studied by developing a self-consistent quantum phenomena-based drift–diffusion model in conjunction with PSpice simulator. The overall performance of the device has been boosted significantly by introducing strain engineering which enhances the out-plane mobility of the charge particles in the intrinsic/active region of the device. The strain is produced in the intrinsic/active region by inclusion of small amount of carbon (C) into the pure Si material. The proposed strain-modified exotic avalanche photodetector exhibits better performance in terms of quantum efficiency (0.671) and photo-responsivity (0.645 A/W) compared to its planer unstrained Si counterpart (quantum efficiency: 0.481, photo-responsivity: 0.524A/W) at 1800 nm wavelength. Additionally, a 3 × 4 array of photodetectors has been designed using this device and its optoelectronic properties are studied in the IR wavelength region. The superiority of the performance of the 3 × 4 array of photodetectors is established in terms of better quantum efficiency (0.872) and better photo-responsivity (0.851 A/W). The validity of quantum phenomena-based drift–diffusion model is established by comparing the simulated data with experimental findings under similar operating conditions. The developed device can be used in defense as well as biomedical industries for sensing applications.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"23 5","pages":"1111 - 1124"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-024-02209-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a strain-modified Si/Si0.97C0.03 asymmetrical superlattice exotic type (p + -i-p-n +) avalanche photodetector has been designed for applications on the infrared wavelength region. The photoelectric characteristics of the device are studied by developing a self-consistent quantum phenomena-based drift–diffusion model in conjunction with PSpice simulator. The overall performance of the device has been boosted significantly by introducing strain engineering which enhances the out-plane mobility of the charge particles in the intrinsic/active region of the device. The strain is produced in the intrinsic/active region by inclusion of small amount of carbon (C) into the pure Si material. The proposed strain-modified exotic avalanche photodetector exhibits better performance in terms of quantum efficiency (0.671) and photo-responsivity (0.645 A/W) compared to its planer unstrained Si counterpart (quantum efficiency: 0.481, photo-responsivity: 0.524A/W) at 1800 nm wavelength. Additionally, a 3 × 4 array of photodetectors has been designed using this device and its optoelectronic properties are studied in the IR wavelength region. The superiority of the performance of the 3 × 4 array of photodetectors is established in terms of better quantum efficiency (0.872) and better photo-responsivity (0.851 A/W). The validity of quantum phenomena-based drift–diffusion model is established by comparing the simulated data with experimental findings under similar operating conditions. The developed device can be used in defense as well as biomedical industries for sensing applications.
期刊介绍:
he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered.
In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.