{"title":"Distributed computing with the cloud","authors":"Yehuda Afek, Gal Giladi, Boaz Patt-Shamir","doi":"10.1007/s00446-024-00460-w","DOIUrl":null,"url":null,"abstract":"<p>We investigate the effect of omnipresent cloud storage on distributed computing. To this end, we specify a network model with links of prescribed bandwidth that connect standard processing nodes, and, in addition, passive storage nodes. Each passive node represents a cloud storage system, such as Dropbox, Google Drive etc. We study a few tasks in this model, assuming a single cloud node connected to all other nodes, which are connected to each other arbitrarily. We give implementations for basic tasks of collaboratively writing to and reading from the cloud, and for more advanced applications such as matrix multiplication and federated learning. Our results show that utilizing node-cloud links as well as node-node links can considerably speed up computations, compared to the case where processors communicate either only through the cloud or only through the network links. We first show how to optimally read and write large files to and from the cloud in general graphs using flow techniques. We use these primitives to derive algorithms for <i>combining</i>, where every processor node has an input value and the task is to compute a combined value under some given associative operator. In the special but common case of “fat links,” where we assume that links between processors are bidirectional and have high bandwidth, we provide near-optimal algorithms for any commutative combining operator (such as vector addition). For the task of matrix multiplication (or other non-commutative combining operators), where the inputs are ordered, we present tight results in the simple “wheel” network, where procesing nodes are arranged in a ring, and are all connected to a single cloud node.</p>","PeriodicalId":50569,"journal":{"name":"Distributed Computing","volume":"61 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Distributed Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00446-024-00460-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the effect of omnipresent cloud storage on distributed computing. To this end, we specify a network model with links of prescribed bandwidth that connect standard processing nodes, and, in addition, passive storage nodes. Each passive node represents a cloud storage system, such as Dropbox, Google Drive etc. We study a few tasks in this model, assuming a single cloud node connected to all other nodes, which are connected to each other arbitrarily. We give implementations for basic tasks of collaboratively writing to and reading from the cloud, and for more advanced applications such as matrix multiplication and federated learning. Our results show that utilizing node-cloud links as well as node-node links can considerably speed up computations, compared to the case where processors communicate either only through the cloud or only through the network links. We first show how to optimally read and write large files to and from the cloud in general graphs using flow techniques. We use these primitives to derive algorithms for combining, where every processor node has an input value and the task is to compute a combined value under some given associative operator. In the special but common case of “fat links,” where we assume that links between processors are bidirectional and have high bandwidth, we provide near-optimal algorithms for any commutative combining operator (such as vector addition). For the task of matrix multiplication (or other non-commutative combining operators), where the inputs are ordered, we present tight results in the simple “wheel” network, where procesing nodes are arranged in a ring, and are all connected to a single cloud node.
期刊介绍:
The international journal Distributed Computing provides a forum for original and significant contributions to the theory, design, specification and implementation of distributed systems.
Topics covered by the journal include but are not limited to:
design and analysis of distributed algorithms;
multiprocessor and multi-core architectures and algorithms;
synchronization protocols and concurrent programming;
distributed operating systems and middleware;
fault-tolerance, reliability and availability;
architectures and protocols for communication networks and peer-to-peer systems;
security in distributed computing, cryptographic protocols;
mobile, sensor, and ad hoc networks;
internet applications;
concurrency theory;
specification, semantics, verification, and testing of distributed systems.
In general, only original papers will be considered. By virtue of submitting a manuscript to the journal, the authors attest that it has not been published or submitted simultaneously for publication elsewhere. However, papers previously presented in conference proceedings may be submitted in enhanced form. If a paper has appeared previously, in any form, the authors must clearly indicate this and provide an account of the differences between the previously appeared form and the submission.