William Omuketi Emitaro, Fanuel Kawaka, David Mutisia Musyimi, Asenath Adienge
{"title":"Diversity of endophytic bacteria isolated from leguminous agroforestry trees in western Kenya.","authors":"William Omuketi Emitaro, Fanuel Kawaka, David Mutisia Musyimi, Asenath Adienge","doi":"10.1186/s13568-024-01676-6","DOIUrl":null,"url":null,"abstract":"<p><p>Plants have diverse and vast niches colonized by endophytic microorganisms that promote the wellbeing of host plant. These microbes inhabit internal plant tissues with no signs of ill health. Bacterial endophytes from many plants have been isolated and characterized due to their beneficial roles however their diversity in leguminous plants still remain unexploited. Diversity of bacterial endophytes isolated from Sesbania sesban, Leucaena diversifolia and Calliandra calothyrsus was assessed using morphological and molecular characteristics. A total of 27 pure isolates were recovered from C. Calothyrsus, L. diversifolia and S. sesban constituting 44.4%, 33.3% and 22.2% from the leaves, stems and roots respectively. The isolates differentiated into Gram positive and negative with rods and spherical shapes. Analysis of 16S rRNA gene sequences revealed 8 closely related bacterial genera that consisted of Bacillus (33.3%), Staphylococcus (22.2%), Alcaligens (11.1%), Pantoea (11.1%), Xanthomonas,and Sphingomonas (7.4%) each. Others included Acinetobacter, and Pseudomonas at 3.7% each. Bacterial endophytes of genus bacillus were isolated from all the three plants. These results indicate the presence of high diversity of endophytic bacteria associated with the different parts of L. diversifolia, S. sesban and C. salothyrsus growing in western Kenya.</p>","PeriodicalId":7537,"journal":{"name":"AMB Express","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10853127/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMB Express","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13568-024-01676-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plants have diverse and vast niches colonized by endophytic microorganisms that promote the wellbeing of host plant. These microbes inhabit internal plant tissues with no signs of ill health. Bacterial endophytes from many plants have been isolated and characterized due to their beneficial roles however their diversity in leguminous plants still remain unexploited. Diversity of bacterial endophytes isolated from Sesbania sesban, Leucaena diversifolia and Calliandra calothyrsus was assessed using morphological and molecular characteristics. A total of 27 pure isolates were recovered from C. Calothyrsus, L. diversifolia and S. sesban constituting 44.4%, 33.3% and 22.2% from the leaves, stems and roots respectively. The isolates differentiated into Gram positive and negative with rods and spherical shapes. Analysis of 16S rRNA gene sequences revealed 8 closely related bacterial genera that consisted of Bacillus (33.3%), Staphylococcus (22.2%), Alcaligens (11.1%), Pantoea (11.1%), Xanthomonas,and Sphingomonas (7.4%) each. Others included Acinetobacter, and Pseudomonas at 3.7% each. Bacterial endophytes of genus bacillus were isolated from all the three plants. These results indicate the presence of high diversity of endophytic bacteria associated with the different parts of L. diversifolia, S. sesban and C. salothyrsus growing in western Kenya.
期刊介绍:
AMB Express is a high quality journal that brings together research in the area of Applied and Industrial Microbiology with a particular interest in ''White Biotechnology'' and ''Red Biotechnology''. The emphasis is on processes employing microorganisms, eukaryotic cell cultures or enzymes for the biosynthesis, transformation and degradation of compounds. This includes fine and bulk chemicals, polymeric compounds and enzymes or other proteins. Downstream processes are also considered. Integrated processes combining biochemical and chemical processes are also published.