Matthew S. Lara , Collin M. Blakely , Jonathan W. Riess
{"title":"Targeting MEK in non-small cell lung cancer","authors":"Matthew S. Lara , Collin M. Blakely , Jonathan W. Riess","doi":"10.1016/j.currproblcancer.2024.101065","DOIUrl":null,"url":null,"abstract":"<div><p>The mitogen-activated protein kinase (MAPK or MEK) pathway modulates tumor cell survival and proliferation in non-small cell lung cancer (NSCLC). Unlike RAS or EGFR, activating mutations in MEK are exceedingly rare in NSCLC. Instead, enhanced activation of the MEK pathway is often linked to increased signaling by upstream oncogenic driver mutations. Thus far, MEK inhibitor monotherapy has shown little promise. However, treatment strategies involving MEK inhibition in combination with other targeted therapies in other oncogene-driven NSCLC has proven to be encouraging. For example, MEK inhibition - when combined with BRAF inhibition, - has shown strong anti-tumor activity in BRAF V600 mutated NSCLC. In this review, recent data on MEK inhibitor strategies in NSCLC are summarized. Furthermore, ongoing early phase trials investigating MEK inhibitor combination therapy with immunotherapy, chemotherapy and other oncogene drivers are highlighted. These and other studies could help inform future rational combination strategies of MEK-ERK inhibition in oncogene-driven NSCLC.</p></div>","PeriodicalId":55193,"journal":{"name":"Current Problems in Cancer","volume":"49 ","pages":"Article 101065"},"PeriodicalIF":2.5000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0147027224000060/pdfft?md5=7053f13c97ee7fcc94fc61e82de9cba0&pid=1-s2.0-S0147027224000060-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Problems in Cancer","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0147027224000060","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The mitogen-activated protein kinase (MAPK or MEK) pathway modulates tumor cell survival and proliferation in non-small cell lung cancer (NSCLC). Unlike RAS or EGFR, activating mutations in MEK are exceedingly rare in NSCLC. Instead, enhanced activation of the MEK pathway is often linked to increased signaling by upstream oncogenic driver mutations. Thus far, MEK inhibitor monotherapy has shown little promise. However, treatment strategies involving MEK inhibition in combination with other targeted therapies in other oncogene-driven NSCLC has proven to be encouraging. For example, MEK inhibition - when combined with BRAF inhibition, - has shown strong anti-tumor activity in BRAF V600 mutated NSCLC. In this review, recent data on MEK inhibitor strategies in NSCLC are summarized. Furthermore, ongoing early phase trials investigating MEK inhibitor combination therapy with immunotherapy, chemotherapy and other oncogene drivers are highlighted. These and other studies could help inform future rational combination strategies of MEK-ERK inhibition in oncogene-driven NSCLC.
期刊介绍:
Current Problems in Cancer seeks to promote and disseminate innovative, transformative, and impactful data on patient-oriented cancer research and clinical care. Specifically, the journal''s scope is focused on reporting the results of well-designed cancer studies that influence/alter practice or identify new directions in clinical cancer research. These studies can include novel therapeutic approaches, new strategies for early diagnosis, cancer clinical trials, and supportive care, among others. Papers that focus solely on laboratory-based or basic science research are discouraged. The journal''s format also allows, on occasion, for a multi-faceted overview of a single topic via a curated selection of review articles, while also offering articles that present dynamic material that influences the oncology field.