Structural, thermal and mechanical properties of rapidly solidified Bi-0.5Ag lead-free solder reinforced Tb rare-earth element for high performance applications
{"title":"Structural, thermal and mechanical properties of rapidly solidified Bi-0.5Ag lead-free solder reinforced Tb rare-earth element for high performance applications","authors":"Rizk Mostafa Shalaby, Mohamed Saad","doi":"10.1108/ssmt-08-2023-0052","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>The purpose of the present work is to study the impacts of rapid cooling and Tb rare-earth additions on the structural, thermal and mechanical behavior of Bi–0.5Ag lead-free solder for high-temperature applications.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>Effect of rapid solidification processing on structural, thermal and mechanical properties of Bi-Ag lead-free solder reinforced Tb rare-earth element.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The obtained results indicated that the microstructure consists of rhombohedral Bi-rich phase and Ag99.5Bi0.5 intermetallic compound (IMC). The addition of Tb could effectively reduce the onset and melting point. The elastic modulus of Tb-containing solders was enhanced to about 90% at 0.5 Tb. The higher elastic modulus may be attributed to solid solution strengthening effect, solubility extension, microstructure refinement and precipitation hardening of uniform distribution Ag99.5Bi0.5 IMC particles which can reasonably modify the microstructure, as well as inhibit the segregation and hinder the motion of dislocations.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>It is recommended that the lead-free Bi-0.5Ag-0.5Tb solder be a candidate instead of common solder alloy (Sn-37Pb) for high temperature and high performance applications.</p><!--/ Abstract__block -->","PeriodicalId":49499,"journal":{"name":"Soldering & Surface Mount Technology","volume":"125 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soldering & Surface Mount Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1108/ssmt-08-2023-0052","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
The purpose of the present work is to study the impacts of rapid cooling and Tb rare-earth additions on the structural, thermal and mechanical behavior of Bi–0.5Ag lead-free solder for high-temperature applications.
Design/methodology/approach
Effect of rapid solidification processing on structural, thermal and mechanical properties of Bi-Ag lead-free solder reinforced Tb rare-earth element.
Findings
The obtained results indicated that the microstructure consists of rhombohedral Bi-rich phase and Ag99.5Bi0.5 intermetallic compound (IMC). The addition of Tb could effectively reduce the onset and melting point. The elastic modulus of Tb-containing solders was enhanced to about 90% at 0.5 Tb. The higher elastic modulus may be attributed to solid solution strengthening effect, solubility extension, microstructure refinement and precipitation hardening of uniform distribution Ag99.5Bi0.5 IMC particles which can reasonably modify the microstructure, as well as inhibit the segregation and hinder the motion of dislocations.
Originality/value
It is recommended that the lead-free Bi-0.5Ag-0.5Tb solder be a candidate instead of common solder alloy (Sn-37Pb) for high temperature and high performance applications.
期刊介绍:
Soldering & Surface Mount Technology seeks to make an important contribution to the advancement of research and application within the technical body of knowledge and expertise in this vital area. Soldering & Surface Mount Technology compliments its sister publications; Circuit World and Microelectronics International.
The journal covers all aspects of SMT from alloys, pastes and fluxes, to reliability and environmental effects, and is currently providing an important dissemination route for new knowledge on lead-free solders and processes. The journal comprises a multidisciplinary study of the key materials and technologies used to assemble state of the art functional electronic devices. The key focus is on assembling devices and interconnecting components via soldering, whilst also embracing a broad range of related approaches.