A wideband, thin, dual-negative, and polarization-independent square-tooth circular ring resonator-based metamaterial absorber for Ku-band applications
{"title":"A wideband, thin, dual-negative, and polarization-independent square-tooth circular ring resonator-based metamaterial absorber for Ku-band applications","authors":"Ramesh Amugothu, Vakula Damera","doi":"10.1017/s1759078724000230","DOIUrl":null,"url":null,"abstract":"In the proposed paper, a novel design and realization of a wide-band, oblique angle-insensitive metamaterial absorbers are presented. The absorber is designed to work over a wide range of frequencies, making it suitable for Ku-band applications. To get wide band absorption, a novel SM-shaped design with a square-tooth circular ring resonator structure is designed efficiently. The unit cell structure is designed with a dielectric substrate (FR4) with a thickness of 3.2 mm (0.16<jats:italic>λ</jats:italic><jats:sub>0</jats:sub>), where <jats:italic>λ</jats:italic><jats:sub>0</jats:sub> is the wavelength of free space. The novel design of this configuration leads to wideband absorption with respect to a conventional absorber. Several physical parameters are also investigated, such as the dielectric constant, permittivity, permeability, impedance, and negative refractive index. The simulation and experimental results show from 13.60 to 16.14 GHz with 99.1% absorption, which is excellent agreement. The analysis of the proposed design indicates that it possesses the remarkable feature of being insensitive to polarization while also exhibiting high absorption even when the angle of incidence varies. For both the simulation and experiment, results are consistent with a frequency range of 13.60–16.14 GHz for normal incidence. Almost perfect absorption works well for solar cells, EM detection, and imaging applications.","PeriodicalId":49052,"journal":{"name":"International Journal of Microwave and Wireless Technologies","volume":"26 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microwave and Wireless Technologies","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s1759078724000230","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In the proposed paper, a novel design and realization of a wide-band, oblique angle-insensitive metamaterial absorbers are presented. The absorber is designed to work over a wide range of frequencies, making it suitable for Ku-band applications. To get wide band absorption, a novel SM-shaped design with a square-tooth circular ring resonator structure is designed efficiently. The unit cell structure is designed with a dielectric substrate (FR4) with a thickness of 3.2 mm (0.16λ0), where λ0 is the wavelength of free space. The novel design of this configuration leads to wideband absorption with respect to a conventional absorber. Several physical parameters are also investigated, such as the dielectric constant, permittivity, permeability, impedance, and negative refractive index. The simulation and experimental results show from 13.60 to 16.14 GHz with 99.1% absorption, which is excellent agreement. The analysis of the proposed design indicates that it possesses the remarkable feature of being insensitive to polarization while also exhibiting high absorption even when the angle of incidence varies. For both the simulation and experiment, results are consistent with a frequency range of 13.60–16.14 GHz for normal incidence. Almost perfect absorption works well for solar cells, EM detection, and imaging applications.
期刊介绍:
The prime objective of the International Journal of Microwave and Wireless Technologies is to enhance the communication between microwave engineers throughout the world. It is therefore interdisciplinary and application oriented, providing a platform for the microwave industry. Coverage includes: applied electromagnetic field theory (antennas, transmission lines and waveguides), components (passive structures and semiconductor device technologies), analogue and mixed-signal circuits, systems, optical-microwave interactions, electromagnetic compatibility, industrial applications, biological effects and medical applications.