Developing a hippocampal neural prosthetic to facilitate human memory encoding and recall of stimulus features and categories

IF 2.1 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Frontiers in Computational Neuroscience Pub Date : 2024-02-08 DOI:10.3389/fncom.2024.1263311
Brent M. Roeder, Xiwei She, Alexander S. Dakos, Bryan Moore, Robert T. Wicks, Mark R. Witcher, Daniel E. Couture, Adrian W. Laxton, Heidi Munger Clary, Gautam Popli, Charles Liu, Brian Lee, Christianne Heck, George Nune, Hui Gong, Susan Shaw, Vasilis Z. Marmarelis, Theodore W. Berger, Sam A. Deadwyler, Dong Song, Robert E. Hampson
{"title":"Developing a hippocampal neural prosthetic to facilitate human memory encoding and recall of stimulus features and categories","authors":"Brent M. Roeder, Xiwei She, Alexander S. Dakos, Bryan Moore, Robert T. Wicks, Mark R. Witcher, Daniel E. Couture, Adrian W. Laxton, Heidi Munger Clary, Gautam Popli, Charles Liu, Brian Lee, Christianne Heck, George Nune, Hui Gong, Susan Shaw, Vasilis Z. Marmarelis, Theodore W. Berger, Sam A. Deadwyler, Dong Song, Robert E. Hampson","doi":"10.3389/fncom.2024.1263311","DOIUrl":null,"url":null,"abstract":"ObjectiveHere, we demonstrate the first successful use of static neural stimulation patterns for specific information content. These static patterns were derived by a model that was applied to a subject’s own hippocampal spatiotemporal neural codes for memory.ApproachWe constructed a new model of processes by which the hippocampus encodes specific memory items via spatiotemporal firing of neural ensembles that underlie the successful encoding of targeted content into short-term memory. A memory decoding model (MDM) of hippocampal CA3 and CA1 neural firing was computed which derives a stimulation pattern for CA1 and CA3 neurons to be applied during the encoding (sample) phase of a delayed match-to-sample (DMS) human short-term memory task.Main resultsMDM electrical stimulation delivered to the CA1 and CA3 locations in the hippocampus during the sample phase of DMS trials facilitated memory of images from the DMS task during a delayed recognition (DR) task that also included control images that were not from the DMS task. Across all subjects, the stimulated trials exhibited significant changes in performance in 22.4% of patient and category combinations. Changes in performance were a combination of both increased memory performance and decreased memory performance, with increases in performance occurring at almost 2 to 1 relative to decreases in performance. Across patients with impaired memory that received bilateral stimulation, significant changes in over 37.9% of patient and category combinations was seen with the changes in memory performance show a ratio of increased to decreased performance of over 4 to 1. Modification of memory performance was dependent on whether memory function was intact or impaired, and if stimulation was applied bilaterally or unilaterally, with nearly all increase in performance seen in subjects with impaired memory receiving bilateral stimulation.SignificanceThese results demonstrate that memory encoding in patients with impaired memory function can be facilitated for specific memory content, which offers a stimulation method for a future implantable neural prosthetic to improve human memory.","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncom.2024.1263311","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

ObjectiveHere, we demonstrate the first successful use of static neural stimulation patterns for specific information content. These static patterns were derived by a model that was applied to a subject’s own hippocampal spatiotemporal neural codes for memory.ApproachWe constructed a new model of processes by which the hippocampus encodes specific memory items via spatiotemporal firing of neural ensembles that underlie the successful encoding of targeted content into short-term memory. A memory decoding model (MDM) of hippocampal CA3 and CA1 neural firing was computed which derives a stimulation pattern for CA1 and CA3 neurons to be applied during the encoding (sample) phase of a delayed match-to-sample (DMS) human short-term memory task.Main resultsMDM electrical stimulation delivered to the CA1 and CA3 locations in the hippocampus during the sample phase of DMS trials facilitated memory of images from the DMS task during a delayed recognition (DR) task that also included control images that were not from the DMS task. Across all subjects, the stimulated trials exhibited significant changes in performance in 22.4% of patient and category combinations. Changes in performance were a combination of both increased memory performance and decreased memory performance, with increases in performance occurring at almost 2 to 1 relative to decreases in performance. Across patients with impaired memory that received bilateral stimulation, significant changes in over 37.9% of patient and category combinations was seen with the changes in memory performance show a ratio of increased to decreased performance of over 4 to 1. Modification of memory performance was dependent on whether memory function was intact or impaired, and if stimulation was applied bilaterally or unilaterally, with nearly all increase in performance seen in subjects with impaired memory receiving bilateral stimulation.SignificanceThese results demonstrate that memory encoding in patients with impaired memory function can be facilitated for specific memory content, which offers a stimulation method for a future implantable neural prosthetic to improve human memory.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开发海马神经假体,促进人类对刺激特征和类别的记忆编码和回忆
目的在这里,我们首次成功地利用静态神经刺激模式来刺激特定的信息内容。方法我们构建了一个新模型,该模型描述了海马通过神经组合的时空发射对特定记忆项目进行编码的过程,这是成功将目标内容编码到短时记忆的基础。通过计算海马CA3和CA1神经发射的记忆解码模型(MDM),得出了在延迟匹配到样本(DMS)人类短时记忆任务的编码(样本)阶段对CA1和CA3神经元的刺激模式。主要结果 在DMS试验的取样阶段对海马CA1和CA3位置进行MDM电刺激,有助于在延迟识别(DR)任务中对DMS任务中的图像进行记忆,该任务还包括非DMS任务中的对照图像。在所有受试者中,有 22.4% 的患者和类别组合在受刺激试验中表现出显著的成绩变化。成绩的变化既包括记忆成绩的提高,也包括记忆成绩的降低,成绩的提高与降低的比例几乎为 2:1。在接受双侧刺激的记忆受损患者中,超过 37.9% 的患者和类别组合的记忆表现发生了显著变化,记忆表现的提高和降低比例超过 4:1。记忆能力的改变取决于记忆功能是完好还是受损,以及是双侧还是单侧刺激,几乎所有记忆受损的受试者在接受双侧刺激后记忆能力都有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Computational Neuroscience
Frontiers in Computational Neuroscience MATHEMATICAL & COMPUTATIONAL BIOLOGY-NEUROSCIENCES
CiteScore
5.30
自引率
3.10%
发文量
166
审稿时长
6-12 weeks
期刊介绍: Frontiers in Computational Neuroscience is a first-tier electronic journal devoted to promoting theoretical modeling of brain function and fostering interdisciplinary interactions between theoretical and experimental neuroscience. Progress in understanding the amazing capabilities of the brain is still limited, and we believe that it will only come with deep theoretical thinking and mutually stimulating cooperation between different disciplines and approaches. We therefore invite original contributions on a wide range of topics that present the fruits of such cooperation, or provide stimuli for future alliances. We aim to provide an interactive forum for cutting-edge theoretical studies of the nervous system, and for promulgating the best theoretical research to the broader neuroscience community. Models of all styles and at all levels are welcome, from biophysically motivated realistic simulations of neurons and synapses to high-level abstract models of inference and decision making. While the journal is primarily focused on theoretically based and driven research, we welcome experimental studies that validate and test theoretical conclusions. Also: comp neuro
期刊最新文献
A combinatorial deep learning method for Alzheimer's disease classification-based merging pretrained networks. Multi-scale asynchronous correlation and 2D convolutional autoencoder for adolescent health risk prediction with limited fMRI data. Decoding the application of deep learning in neuroscience: a bibliometric analysis. Optimizing extubation success: a comparative analysis of time series algorithms and activation functions. Editorial: Understanding and bridging the gap between neuromorphic computing and machine learning, volume II.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1