{"title":"Memory consolidation from a reinforcement learning perspective.","authors":"Jong Won Lee, Min Whan Jung","doi":"10.3389/fncom.2024.1538741","DOIUrl":null,"url":null,"abstract":"<p><p>Memory consolidation refers to the process of converting temporary memories into long-lasting ones. It is widely accepted that new experiences are initially stored in the hippocampus as rapid associative memories, which then undergo a consolidation process to establish more permanent traces in other regions of the brain. Over the past two decades, studies in humans and animals have demonstrated that the hippocampus is crucial not only for memory but also for imagination and future planning, with the CA3 region playing a pivotal role in generating novel activity patterns. Additionally, a growing body of evidence indicates the involvement of the hippocampus, especially the CA1 region, in valuation processes. Based on these findings, we propose that the CA3 region of the hippocampus generates diverse activity patterns, while the CA1 region evaluates and reinforces those patterns most likely to maximize rewards. This framework closely parallels Dyna, a reinforcement learning algorithm introduced by Sutton in 1991. In Dyna, an agent performs offline simulations to supplement trial-and-error value learning, greatly accelerating the learning process. We suggest that memory consolidation might be viewed as a process of deriving optimal strategies based on simulations derived from limited experiences, rather than merely strengthening incidental memories. From this perspective, memory consolidation functions as a form of offline reinforcement learning, aimed at enhancing adaptive decision-making.</p>","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"18 ","pages":"1538741"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751224/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncom.2024.1538741","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Memory consolidation refers to the process of converting temporary memories into long-lasting ones. It is widely accepted that new experiences are initially stored in the hippocampus as rapid associative memories, which then undergo a consolidation process to establish more permanent traces in other regions of the brain. Over the past two decades, studies in humans and animals have demonstrated that the hippocampus is crucial not only for memory but also for imagination and future planning, with the CA3 region playing a pivotal role in generating novel activity patterns. Additionally, a growing body of evidence indicates the involvement of the hippocampus, especially the CA1 region, in valuation processes. Based on these findings, we propose that the CA3 region of the hippocampus generates diverse activity patterns, while the CA1 region evaluates and reinforces those patterns most likely to maximize rewards. This framework closely parallels Dyna, a reinforcement learning algorithm introduced by Sutton in 1991. In Dyna, an agent performs offline simulations to supplement trial-and-error value learning, greatly accelerating the learning process. We suggest that memory consolidation might be viewed as a process of deriving optimal strategies based on simulations derived from limited experiences, rather than merely strengthening incidental memories. From this perspective, memory consolidation functions as a form of offline reinforcement learning, aimed at enhancing adaptive decision-making.
期刊介绍:
Frontiers in Computational Neuroscience is a first-tier electronic journal devoted to promoting theoretical modeling of brain function and fostering interdisciplinary interactions between theoretical and experimental neuroscience. Progress in understanding the amazing capabilities of the brain is still limited, and we believe that it will only come with deep theoretical thinking and mutually stimulating cooperation between different disciplines and approaches. We therefore invite original contributions on a wide range of topics that present the fruits of such cooperation, or provide stimuli for future alliances. We aim to provide an interactive forum for cutting-edge theoretical studies of the nervous system, and for promulgating the best theoretical research to the broader neuroscience community. Models of all styles and at all levels are welcome, from biophysically motivated realistic simulations of neurons and synapses to high-level abstract models of inference and decision making. While the journal is primarily focused on theoretically based and driven research, we welcome experimental studies that validate and test theoretical conclusions.
Also: comp neuro