Forming-Free and Non-linear Resistive Switching in Bilayer \(\hbox {HfO}_{\textrm{x}}\)/\(\hbox {TaO}_{\textrm{x}}\) Memory Devices by Interface-Induced Internal Resistance

IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Electronic Materials Letters Pub Date : 2024-02-06 DOI:10.1007/s13391-023-00481-w
Mari Napari, Spyros Stathopoulos, Themis Prodromakis, Firman Simanjuntak
{"title":"Forming-Free and Non-linear Resistive Switching in Bilayer \\(\\hbox {HfO}_{\\textrm{x}}\\)/\\(\\hbox {TaO}_{\\textrm{x}}\\) Memory Devices by Interface-Induced Internal Resistance","authors":"Mari Napari,&nbsp;Spyros Stathopoulos,&nbsp;Themis Prodromakis,&nbsp;Firman Simanjuntak","doi":"10.1007/s13391-023-00481-w","DOIUrl":null,"url":null,"abstract":"<p>Resistive switching memory devices with tantalum oxide (<span>\\(\\hbox {TaO}_{\\textrm{x}}\\)</span>) and hafnium oxide (<span>\\(\\hbox {HfO}_{\\textrm{x}}\\)</span>) mono- and bilayers were fabricated using atomic layer deposition. The bilayer devices with Ti and TiN electrodes show non-linear switching characteristics, and can operate without requiring an initial electroforming step. The insertion of the <span>\\(\\hbox {HfO}_{\\textrm{x}}\\)</span> layer induces the switching behaviour on single layer <span>\\(\\hbox {TaO}_{\\textrm{x}}\\)</span> that shows Zener diode-like characteristics, with conductivity depending on the top electrode metal. The electronic conductivity mechanism study shows Schottky emission at low voltage regime followed by tunneling at higher applied bias, both indicating interface-dominated conduction. The switching mechanism study is supported by X-ray photoelectron spectroscopy characterization of the films that show a formation of <span>\\(\\hbox {TaO}_{\\textrm{x}}\\hbox {N}_{\\textrm{y}}\\)</span> and <span>\\(\\hbox {TaN}_{\\textrm{x}}\\)</span> species at the oxide-electrode interface. This interfacial layer serves as a high resistivity barrier layer enabling the homogeneous resistive switching behavior.</p>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 4","pages":"363 - 371"},"PeriodicalIF":2.1000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13391-023-00481-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s13391-023-00481-w","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Resistive switching memory devices with tantalum oxide (\(\hbox {TaO}_{\textrm{x}}\)) and hafnium oxide (\(\hbox {HfO}_{\textrm{x}}\)) mono- and bilayers were fabricated using atomic layer deposition. The bilayer devices with Ti and TiN electrodes show non-linear switching characteristics, and can operate without requiring an initial electroforming step. The insertion of the \(\hbox {HfO}_{\textrm{x}}\) layer induces the switching behaviour on single layer \(\hbox {TaO}_{\textrm{x}}\) that shows Zener diode-like characteristics, with conductivity depending on the top electrode metal. The electronic conductivity mechanism study shows Schottky emission at low voltage regime followed by tunneling at higher applied bias, both indicating interface-dominated conduction. The switching mechanism study is supported by X-ray photoelectron spectroscopy characterization of the films that show a formation of \(\hbox {TaO}_{\textrm{x}}\hbox {N}_{\textrm{y}}\) and \(\hbox {TaN}_{\textrm{x}}\) species at the oxide-electrode interface. This interfacial layer serves as a high resistivity barrier layer enabling the homogeneous resistive switching behavior.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过界面诱导内阻实现双层 $$\hbox {HfO}_{textrm{x}}$ / $$\hbox {TaO}_{textrm{x}}$ 存储器件中的无成型和非线性电阻切换
摘要 利用原子层沉积法制造了具有氧化钽(\(\hbox {TaO}_{\textrm{x}}/\)和氧化铪(\(\hbox {HfO}_{\textrm{x}}/\)单层和双层的电阻式开关存储器件。带有 Ti 和 TiN 电极的双层器件显示出非线性开关特性,并且无需初始电铸步骤即可运行。插入(\hbox {HfO}_{\textrm{x}})层会诱导单层(\hbox {TaO}_{\textrm{x}})上的开关行为,从而显示出齐纳二极管般的特性,其电导率取决于顶层电极金属。电子传导机制研究表明,在低电压条件下会出现肖特基发射,随后在较高的外加偏压条件下会出现隧道现象,这两种现象都表明界面主导传导。薄膜的 X 射线光电子能谱表征为开关机制研究提供了支持,该表征显示在氧化物-电极界面上形成了 \(\hbox {TaO}_{\textrm{x}}\hbox {N}_{\textrm{y}}\) 和 \(\hbox {TaN}_{\textrm{x}}\) 物种。该界面层可作为高电阻率阻挡层,从而实现均匀的电阻开关行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Electronic Materials Letters
Electronic Materials Letters 工程技术-材料科学:综合
CiteScore
4.70
自引率
20.80%
发文量
52
审稿时长
2.3 months
期刊介绍: Electronic Materials Letters is an official journal of the Korean Institute of Metals and Materials. It is a peer-reviewed international journal publishing print and online version. It covers all disciplines of research and technology in electronic materials. Emphasis is placed on science, engineering and applications of advanced materials, including electronic, magnetic, optical, organic, electrochemical, mechanical, and nanoscale materials. The aspects of synthesis and processing include thin films, nanostructures, self assembly, and bulk, all related to thermodynamics, kinetics and/or modeling.
期刊最新文献
Impact of Crystal Domain on Electrical Performance and Bending Durability of Flexible Organic Thin-Film Transistors with diF-TES-ADT Semiconductor All-Cobalt-Free Layered/Olivine Mixed Cathode Material for High-Electrode Density and Enhanced Cycle-Life Performance High-speed and Sub-ppm Detectable Tellurene NO2 Chemiresistive Room-Temperature Sensor under Humidity Environments A Neural Network Approach for Health State Estimation of Lithium-Ion Batteries Incorporating Physics Knowledge Enhanced Magnetic Permeability Through Improved Packing Density for Thin-Film Type Power Inductors for High-Frequency Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1