{"title":"Study on Precursor Distribution of a No-inner-wall Deposition Atmospheric Pressure Plasma Jet Used for Thin Film Deposition","authors":"Tao He, Zhixin Qian, Qin Wang, Yu Zhang, Haoze Wang, Jing Zhang, Xiang Fei, Yu Xu","doi":"10.1007/s11090-024-10448-w","DOIUrl":null,"url":null,"abstract":"<div><p>An atmospheric pressure jet that effectively prevents inner wall deposition has been developed, and its precursor distribution and thin-film deposition characteristics have been studied. The laser scattering and fluid simulation results show that the precursor (C<sub>4</sub>H<sub>10</sub>Zn) flow out of the eight holes of the central electrode and diffuse into the discharge region. Under the action of a discharge gas (Ar) of 2 slm is blown out of the plasma jet device, and will not diffuse to the inner wall of the plasma jet device. The optical photographs of the discharge show that the site of the monomer cleavage is about 1 mm closest to the inner wall of the jet device. With optical emission spectra (OES), a large number of characteristic emission peaks of Zn and CH were detected. The pattern of the deposited film closely resembles the diffusion pattern of the precursor within the plasma jet apparatus. By investigating deposited films in different regions, the influence of precursor distribution on film morphology and composition has been studied. XPS detected films near (black film) and far (white film) from the central region, and the results showed that films near the central region contained more organic components. This plasma device offers a stable plasma plume for thin film deposition and nanoparticle preparation.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"44 2","pages":"807 - 819"},"PeriodicalIF":2.6000,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11090-024-10448-w","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
An atmospheric pressure jet that effectively prevents inner wall deposition has been developed, and its precursor distribution and thin-film deposition characteristics have been studied. The laser scattering and fluid simulation results show that the precursor (C4H10Zn) flow out of the eight holes of the central electrode and diffuse into the discharge region. Under the action of a discharge gas (Ar) of 2 slm is blown out of the plasma jet device, and will not diffuse to the inner wall of the plasma jet device. The optical photographs of the discharge show that the site of the monomer cleavage is about 1 mm closest to the inner wall of the jet device. With optical emission spectra (OES), a large number of characteristic emission peaks of Zn and CH were detected. The pattern of the deposited film closely resembles the diffusion pattern of the precursor within the plasma jet apparatus. By investigating deposited films in different regions, the influence of precursor distribution on film morphology and composition has been studied. XPS detected films near (black film) and far (white film) from the central region, and the results showed that films near the central region contained more organic components. This plasma device offers a stable plasma plume for thin film deposition and nanoparticle preparation.
期刊介绍:
Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.