Tribological behaviors of AZ91D magnesium alloy under the lubrication of oil suspended synthetic magnesium silicate hydroxide nanotubes

IF 15.8 1区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING Journal of Magnesium and Alloys Pub Date : 2025-01-01 DOI:10.1016/j.jma.2024.01.007
Y.L. Yin , H.L. Yu , H.M. Wang , X.C. Ji , Z.Y. Song , X.Y. Zhou , M. Wei , P.J. Shi , W. Zhang , C.F. Zhao
{"title":"Tribological behaviors of AZ91D magnesium alloy under the lubrication of oil suspended synthetic magnesium silicate hydroxide nanotubes","authors":"Y.L. Yin ,&nbsp;H.L. Yu ,&nbsp;H.M. Wang ,&nbsp;X.C. Ji ,&nbsp;Z.Y. Song ,&nbsp;X.Y. Zhou ,&nbsp;M. Wei ,&nbsp;P.J. Shi ,&nbsp;W. Zhang ,&nbsp;C.F. Zhao","doi":"10.1016/j.jma.2024.01.007","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient lubrication of magnesium alloys is a highly challenging topic in the field of tribology. In this study, magnesium silicate hydroxide (MSH) nanotubes with serpentine structures were synthesized. The tribological behavior of AZ91D magnesium alloy rubbed against GCr15 steel was studied under lubricating oil with surface-modified MSH nanotubes as additives. The effects of the concentration, applied load, and reciprocating frequency on the friction and wear of the AZ91D alloy were studied using an SRV-4 sliding wear tester. Results show a decrease of 18.7–68.5% in friction coefficient, and a reduction of 19.4–54.3% in wear volume of magnesium alloy can be achieved by applying the synthetic serpentine additive under different conditions. A suspension containing 0.3 <em>wt.%</em> MSH was most efficient in reducing wear and friction. High frequency and medium load were more conducive to improving the tribological properties of magnesium alloys. A series of beneficial physical and chemical processes occurring at the AZ91D alloy/steel interface can be used to explain friction and wear reduction based on the characterization of the morphology, chemical composition, chemical state, microstructure, and nanomechanical properties of the worn surface. The synthetic MSH, with serpentine structure and nanotube morphology, possesses excellent adsorbability, high chemical activity, and good self-lubrication and catalytic activity. Therefore, physical polishing, tribochemical reactions, and physical-chemical depositions can occur easily on the sliding contacts. A dense tribolayer with a complex composition and composite structure was formed on the worn surface. Its high hardness, good toughness and plasticity, and prominent lubricity resulted in the improvement of friction and wear, making the synthetic MSH a promising efficient oil additive for magnesium alloys under boundary and mixed lubrication.</div></div>","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"13 1","pages":"Pages 379-397"},"PeriodicalIF":15.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213956724000215","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient lubrication of magnesium alloys is a highly challenging topic in the field of tribology. In this study, magnesium silicate hydroxide (MSH) nanotubes with serpentine structures were synthesized. The tribological behavior of AZ91D magnesium alloy rubbed against GCr15 steel was studied under lubricating oil with surface-modified MSH nanotubes as additives. The effects of the concentration, applied load, and reciprocating frequency on the friction and wear of the AZ91D alloy were studied using an SRV-4 sliding wear tester. Results show a decrease of 18.7–68.5% in friction coefficient, and a reduction of 19.4–54.3% in wear volume of magnesium alloy can be achieved by applying the synthetic serpentine additive under different conditions. A suspension containing 0.3 wt.% MSH was most efficient in reducing wear and friction. High frequency and medium load were more conducive to improving the tribological properties of magnesium alloys. A series of beneficial physical and chemical processes occurring at the AZ91D alloy/steel interface can be used to explain friction and wear reduction based on the characterization of the morphology, chemical composition, chemical state, microstructure, and nanomechanical properties of the worn surface. The synthetic MSH, with serpentine structure and nanotube morphology, possesses excellent adsorbability, high chemical activity, and good self-lubrication and catalytic activity. Therefore, physical polishing, tribochemical reactions, and physical-chemical depositions can occur easily on the sliding contacts. A dense tribolayer with a complex composition and composite structure was formed on the worn surface. Its high hardness, good toughness and plasticity, and prominent lubricity resulted in the improvement of friction and wear, making the synthetic MSH a promising efficient oil additive for magnesium alloys under boundary and mixed lubrication.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
油悬浮合成硅酸氢氧化镁纳米管润滑下 AZ91D 镁合金的摩擦学行为
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
NaOH
阿拉丁
MgCl2?6H2O
来源期刊
Journal of Magnesium and Alloys
Journal of Magnesium and Alloys Engineering-Mechanics of Materials
CiteScore
20.20
自引率
14.80%
发文量
52
审稿时长
59 days
期刊介绍: The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.
期刊最新文献
Spark plasma sintering of a novel Mg-0.7Ca alloy: A comprehensive study Enhancing the formability of flame-retardant magnesium alloy through Zn alloying Magnesium-reinforced sandwich structured composite membranes promote osteogenesis Understanding pyramidal slip-induced deformation bands and dynamic recrystallization in AZWX3100 magnesium alloy Unraveling electrochemical performance of magnesium vanadate-based nanostructures as advanced cathodes for rechargeable aqueous zinc-ion batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1