Sleep-phasic heart rate variability predicts stress severity: Building a machine learning-based stress prediction model.

IF 3 2区 心理学 Q2 PSYCHIATRY Stress and Health Pub Date : 2024-08-01 Epub Date: 2024-02-27 DOI:10.1002/smi.3386
Jingjing Fan, Junhua Mei, Yuan Yang, Jiajia Lu, Quan Wang, Xiaoyun Yang, Guohua Chen, Runsen Wang, Yujia Han, Rong Sheng, Wei Wang, Fengfei Ding
{"title":"Sleep-phasic heart rate variability predicts stress severity: Building a machine learning-based stress prediction model.","authors":"Jingjing Fan, Junhua Mei, Yuan Yang, Jiajia Lu, Quan Wang, Xiaoyun Yang, Guohua Chen, Runsen Wang, Yujia Han, Rong Sheng, Wei Wang, Fengfei Ding","doi":"10.1002/smi.3386","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a novel approach for predicting stress severity by measuring sleep phasic heart rate variability (HRV) using a smart device. This device can potentially be applied for stress self-screening in large populations. Using a Holter electrocardiogram (ECG) and a Huawei smart device, we conducted 24-h dual recordings of 159 medical workers working regular shifts. Based on photoplethysmography (PPG) and accelerometer signals acquired by the Huawei smart device, we sorted episodes of cyclic alternating pattern (CAP; unstable sleep), non-cyclic alternating pattern (NCAP; stable sleep), wakefulness, and rapid eye movement (REM) sleep based on cardiopulmonary coupling (CPC) algorithms. We further calculated the HRV indices during NCAP, CAP and REM sleep episodes using both the Holter ECG and smart-device PPG signals. We later developed a machine learning model to predict stress severity based only on the smart device data obtained from the participants along with a clinical evaluation of emotion and stress conditions. Sleep phasic HRV indices predict individual stress severity with better performance in CAP or REM sleep than in NCAP. Using the smart device data only, the optimal machine learning-based stress prediction model exhibited accuracy of 80.3 %, sensitivity 87.2 %, and 63.9 % for specificity. Sleep phasic heart rate variability can be accurately evaluated using a smart device and subsequently can be used for stress predication.</p>","PeriodicalId":51175,"journal":{"name":"Stress and Health","volume":" ","pages":"e3386"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stress and Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/smi.3386","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a novel approach for predicting stress severity by measuring sleep phasic heart rate variability (HRV) using a smart device. This device can potentially be applied for stress self-screening in large populations. Using a Holter electrocardiogram (ECG) and a Huawei smart device, we conducted 24-h dual recordings of 159 medical workers working regular shifts. Based on photoplethysmography (PPG) and accelerometer signals acquired by the Huawei smart device, we sorted episodes of cyclic alternating pattern (CAP; unstable sleep), non-cyclic alternating pattern (NCAP; stable sleep), wakefulness, and rapid eye movement (REM) sleep based on cardiopulmonary coupling (CPC) algorithms. We further calculated the HRV indices during NCAP, CAP and REM sleep episodes using both the Holter ECG and smart-device PPG signals. We later developed a machine learning model to predict stress severity based only on the smart device data obtained from the participants along with a clinical evaluation of emotion and stress conditions. Sleep phasic HRV indices predict individual stress severity with better performance in CAP or REM sleep than in NCAP. Using the smart device data only, the optimal machine learning-based stress prediction model exhibited accuracy of 80.3 %, sensitivity 87.2 %, and 63.9 % for specificity. Sleep phasic heart rate variability can be accurately evaluated using a smart device and subsequently can be used for stress predication.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
睡眠时心率变异性可预测压力严重程度:建立基于机器学习的压力预测模型
我们提出了一种利用智能设备测量睡眠相位心率变异性(HRV)来预测压力严重程度的新方法。这种设备有可能被应用于大量人群的压力自我筛查。我们使用 Holter 心电图(ECG)和华为智能设备,对 159 名正常轮班的医务工作者进行了 24 小时双重记录。基于华为智能设备获取的光电血压计(PPG)和加速度计信号,我们根据心肺耦合(CPC)算法对周期性交替模式(CAP;不稳定睡眠)、非周期性交替模式(NCAP;稳定睡眠)、清醒和快速眼动(REM)睡眠进行了分类。我们利用 Holter ECG 和智能设备 PPG 信号进一步计算了 NCAP、CAP 和 REM 睡眠发作期间的心率变异指数。随后,我们开发了一个机器学习模型,仅根据从参与者处获得的智能设备数据以及对情绪和压力状况的临床评估来预测压力的严重程度。睡眠相位心率变异指数可预测个人压力严重程度,在 CAP 或快速动眼期睡眠中的表现优于 NCAP。仅使用智能设备数据,基于机器学习的最佳压力预测模型的准确率为 80.3%,灵敏度为 87.2%,特异性为 63.9%。使用智能设备可以准确评估睡眠相位心率变异性,随后可用于压力预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Stress and Health
Stress and Health 医学-精神病学
CiteScore
6.40
自引率
4.90%
发文量
91
审稿时长
>12 weeks
期刊介绍: Stress is a normal component of life and a number of mechanisms exist to cope with its effects. The stresses that challenge man"s existence in our modern society may result in failure of these coping mechanisms, with resultant stress-induced illness. The aim of the journal therefore is to provide a forum for discussion of all aspects of stress which affect the individual in both health and disease. The Journal explores the subject from as many aspects as possible, so that when stress becomes a consideration, health information can be presented as to the best ways by which to minimise its effects.
期刊最新文献
Destructive Self-Leadership? Self-Leadership, Maladaptive Coping, and Stress in College Students. Global Research on Cyberchondria: Scientometric and Visual Analysis From 2003 to 2022. Psychological Distress, Resources, and Coping Strategies Among Evacuees and Non-Evacuees From an Armed Conflict Zone: A Network Analysis. Reflective Abstract Processing Reduces Negative Emotions Independent of Self-Perspective. The Impact of Physical Activity on the Disability-Related Stress of Individuals With Physical Disabilities: A Five-Year Longitudinal Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1