Intermolecular donor-acceptor stacking to suppress triplet exciton diffusion for long-persistent organic room-temperature phosphorescence.

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL Journal of Chemical Physics Pub Date : 2024-02-28 DOI:10.1063/5.0192376
Jiajia Ma, Jiawen Dou, Nuo Xu, Guo Wang, Yuai Duan, Yi Liao, Yuanping Yi, Hua Geng
{"title":"Intermolecular donor-acceptor stacking to suppress triplet exciton diffusion for long-persistent organic room-temperature phosphorescence.","authors":"Jiajia Ma, Jiawen Dou, Nuo Xu, Guo Wang, Yuai Duan, Yi Liao, Yuanping Yi, Hua Geng","doi":"10.1063/5.0192376","DOIUrl":null,"url":null,"abstract":"<p><p>Controlling triplet states is crucial to improve the efficiency and lifetime of organic room temperature phosphorescence (ORTP). Although the intrinsic factors from intramolecular radiative and non-radiative decay have been intensively investigated, the extrinsic factors that affect triplet exciton quenching are rarely reported. Diffusion to the defect sites inside the crystal or at the crystal surface may bring about quenching of triplet exciton. Here, the phosphorescence lifetime is found to have a negative correlation with the triplet exciton diffusion coefficient based on the density functional theory (DFT)/time-dependent density functional theory (TD-DFT) calculations on a series of ORTP materials. For systems with a weak charge transfer (CT) characteristic, close π-π stacking will lead to strong triplet coupling and fast triplet exciton diffusion in most cases, which is detrimental to the phosphorescence lifetime. Notably, for intramolcular donor-acceptor (D-A) type systems with a CT characteristic, intermolecular D-A stacking results in ultra-small triplet coupling, thus contributing to slow triplet diffusion and long phosphorescence lifetime. These findings shed some light on molecular design toward high-efficiency long persistent ORTP.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"160 8","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0192376","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Controlling triplet states is crucial to improve the efficiency and lifetime of organic room temperature phosphorescence (ORTP). Although the intrinsic factors from intramolecular radiative and non-radiative decay have been intensively investigated, the extrinsic factors that affect triplet exciton quenching are rarely reported. Diffusion to the defect sites inside the crystal or at the crystal surface may bring about quenching of triplet exciton. Here, the phosphorescence lifetime is found to have a negative correlation with the triplet exciton diffusion coefficient based on the density functional theory (DFT)/time-dependent density functional theory (TD-DFT) calculations on a series of ORTP materials. For systems with a weak charge transfer (CT) characteristic, close π-π stacking will lead to strong triplet coupling and fast triplet exciton diffusion in most cases, which is detrimental to the phosphorescence lifetime. Notably, for intramolcular donor-acceptor (D-A) type systems with a CT characteristic, intermolecular D-A stacking results in ultra-small triplet coupling, thus contributing to slow triplet diffusion and long phosphorescence lifetime. These findings shed some light on molecular design toward high-efficiency long persistent ORTP.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分子间供体-受体堆叠抑制三重激子扩散,实现长效有机室温磷光。
控制三重态对于提高有机室温磷光(ORTP)的效率和寿命至关重要。虽然分子内辐射衰变和非辐射衰变的内在因素已得到深入研究,但影响三重激子淬灭的外在因素却鲜有报道。向晶体内部或晶体表面缺陷位点的扩散可能会导致三重激子淬灭。本文基于密度泛函理论(DFT)/时间相关密度泛函理论(TD-DFT)对一系列 ORTP 材料的计算,发现磷光寿命与三重激发子扩散系数呈负相关。对于具有弱电荷转移(CT)特性的体系,在大多数情况下,紧密的π-π堆积会导致强三重耦合和快速的三重激子扩散,这对磷光寿命不利。值得注意的是,对于具有 CT 特性的分子内供体-受体(D-A)型体系,分子间 D-A 堆叠会导致超小的三重子耦合,从而有助于减缓三重子扩散和延长磷光寿命。这些发现为实现高效长持续 ORTP 的分子设计提供了一些启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
期刊最新文献
A new rigid non-polarizable model for semi-heavy water: TIP4P/2005-SHW. Atomistic insights into liquid crystals of board-like molecules via molecular dynamics simulation. Canonical coupled cluster binding benchmark for nanoscale noncovalent complexes at the hundred-atom scale. Characterization of interactions in battery slurry via MD simulation: Influence on miscibility, morphology, and dispersion with varying ACN content in HNBR. Beyond the Debye-Hückel limit: Toward a general theory for concentrated electrolytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1