{"title":"Canonical coupled cluster binding benchmark for nanoscale noncovalent complexes at the hundred-atom scale.","authors":"Ka Un Lao","doi":"10.1063/5.0242359","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we introduce two datasets for nanoscale noncovalent binding, featuring complexes at the hundred-atom scale, benchmarked using coupled cluster with single, double, and perturbative triple [CCSD(T)] excitations extrapolated to the complete basis set (CBS) limit. The first dataset, L14, comprises 14 complexes with canonical CCSD(T)/CBS benchmarks, extending the applicability of CCSD(T)/CBS binding benchmarks to systems as large as 113 atoms. The second dataset, vL11, consists of 11 even larger complexes, evaluated using the local CCSD(T)/CBS method with stringent thresholds, covering systems up to 174 atoms. We compare binding energies obtained from local CCSD(T) and fixed-node diffusion Monte Carlo (FN-DMC), which have previously shown discrepancies exceeding the chemical accuracy threshold of 1 kcal/mol in large complexes, with the new canonical CCSD(T)/CBS results. While local CCSD(T)/CBS agrees with canonical CCSD(T)/CBS within binding uncertainties, FN-DMC consistently underestimates binding energies in π-π complexes by over 1 kcal/mol. Potential sources of error in canonical CCSD(T)/CBS are discussed, and we argue that the observed discrepancies are unlikely to originate from CCSD(T) itself. Instead, the fixed-node approximation in FN-DMC warrants further investigation to elucidate these binding discrepancies. Using these datasets as reference, we evaluate the performance of various electronic structure methods, semi-empirical approaches, and machine learning potentials for nanoscale complexes. Based on computational accuracy and stability across system sizes, we recommend MP2+aiD(CCD), PBE0+D4, and ωB97X-3c as reliable methods for investigating noncovalent interactions in nanoscale complexes, maintaining their promising performance observed in smaller systems.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"161 23","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0242359","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we introduce two datasets for nanoscale noncovalent binding, featuring complexes at the hundred-atom scale, benchmarked using coupled cluster with single, double, and perturbative triple [CCSD(T)] excitations extrapolated to the complete basis set (CBS) limit. The first dataset, L14, comprises 14 complexes with canonical CCSD(T)/CBS benchmarks, extending the applicability of CCSD(T)/CBS binding benchmarks to systems as large as 113 atoms. The second dataset, vL11, consists of 11 even larger complexes, evaluated using the local CCSD(T)/CBS method with stringent thresholds, covering systems up to 174 atoms. We compare binding energies obtained from local CCSD(T) and fixed-node diffusion Monte Carlo (FN-DMC), which have previously shown discrepancies exceeding the chemical accuracy threshold of 1 kcal/mol in large complexes, with the new canonical CCSD(T)/CBS results. While local CCSD(T)/CBS agrees with canonical CCSD(T)/CBS within binding uncertainties, FN-DMC consistently underestimates binding energies in π-π complexes by over 1 kcal/mol. Potential sources of error in canonical CCSD(T)/CBS are discussed, and we argue that the observed discrepancies are unlikely to originate from CCSD(T) itself. Instead, the fixed-node approximation in FN-DMC warrants further investigation to elucidate these binding discrepancies. Using these datasets as reference, we evaluate the performance of various electronic structure methods, semi-empirical approaches, and machine learning potentials for nanoscale complexes. Based on computational accuracy and stability across system sizes, we recommend MP2+aiD(CCD), PBE0+D4, and ωB97X-3c as reliable methods for investigating noncovalent interactions in nanoscale complexes, maintaining their promising performance observed in smaller systems.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.