{"title":"The conceptual design of the high-efficiency 400 kW solid-state power station at 352 MHz for the European spallation source","authors":"Seyed Alireza Mohadeskasaei, Dragos Dancila","doi":"10.1017/s1759078724000175","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces an innovative conceptual design of a 400 kW solid-state power amplifier (SSPA) station and presents preliminary measurements for the key components. Recent advancements and benefits of solid-state technology have made the prospect of replacing vacuum tubes increasingly appealing. Historically, a significant challenge was the limited output power capacity of individual solid-state transistors, necessitating the integration of numerous units to generate high-power microwave signals in the range of hundreds of kilowatts. However, modern transistors capable of producing over 2 kW of output power have emerged, facilitating this transition. Another weak point was low power efficiency in high-power operating mode. The advanced rugged technology (ART) of solid-state devices enables the utilization of these transistors in nonlinear and switching operating classes, thereby enabling the creation of high-efficiency high-power amplifiers. In this conceptual design, 264 SSPA modules based on ART, each with a power output of 1.6 kW, are combined. The measurements revealed a single SSPA capable of delivering up to 2 kW output power with a power efficiency of 73% at frequency of 352 MHz. Due to the minimal losses during module combination and working SSPA in Class-C operation mode, the power efficiency of the station is expected to closely mirror that of a single module.</p>","PeriodicalId":49052,"journal":{"name":"International Journal of Microwave and Wireless Technologies","volume":"79 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microwave and Wireless Technologies","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s1759078724000175","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces an innovative conceptual design of a 400 kW solid-state power amplifier (SSPA) station and presents preliminary measurements for the key components. Recent advancements and benefits of solid-state technology have made the prospect of replacing vacuum tubes increasingly appealing. Historically, a significant challenge was the limited output power capacity of individual solid-state transistors, necessitating the integration of numerous units to generate high-power microwave signals in the range of hundreds of kilowatts. However, modern transistors capable of producing over 2 kW of output power have emerged, facilitating this transition. Another weak point was low power efficiency in high-power operating mode. The advanced rugged technology (ART) of solid-state devices enables the utilization of these transistors in nonlinear and switching operating classes, thereby enabling the creation of high-efficiency high-power amplifiers. In this conceptual design, 264 SSPA modules based on ART, each with a power output of 1.6 kW, are combined. The measurements revealed a single SSPA capable of delivering up to 2 kW output power with a power efficiency of 73% at frequency of 352 MHz. Due to the minimal losses during module combination and working SSPA in Class-C operation mode, the power efficiency of the station is expected to closely mirror that of a single module.
期刊介绍:
The prime objective of the International Journal of Microwave and Wireless Technologies is to enhance the communication between microwave engineers throughout the world. It is therefore interdisciplinary and application oriented, providing a platform for the microwave industry. Coverage includes: applied electromagnetic field theory (antennas, transmission lines and waveguides), components (passive structures and semiconductor device technologies), analogue and mixed-signal circuits, systems, optical-microwave interactions, electromagnetic compatibility, industrial applications, biological effects and medical applications.