{"title":"Classical-trajectory model for ionizing proton-ammonia molecule collisions: the role of multiple ionization","authors":"Alba Jorge, Marko Horbatsch, Tom Kirchner","doi":"10.1088/1361-6455/ad285c","DOIUrl":null,"url":null,"abstract":"We use an independent electron model with semi-classical approximation to electron dynamics to investigate differential cross sections for electron emission in fast collisions of protons with ammonia molecules. An effective potential model for the electronic orbitals is introduced, and utilized in the context of the classical-trajectory Monte Carlo (CTMC) approach for single-electron dynamics. Cross sections differential in electron emission angle and energy are compared with experimental data. Compared to previous scattering-theory based quantum-mechanical results the time-dependent semi-classical CTMC approach provides results of similar quality for intermediate and high ionized electron energies. We find some discrepancies in the total cross sections for <italic toggle=\"yes\">q</italic>-fold ionization between the present model and independent-atom-model calculations. The double ionization cross sections are considerably larger than recent experimental data which are derived from coincidence counting of charged fragments. The calculated triple ionization cross sections exceed the experimental coincidence data for <italic toggle=\"yes\">q</italic> = 3 by several orders of magnitude at intermediate energies.","PeriodicalId":16826,"journal":{"name":"Journal of Physics B: Atomic, Molecular and Optical Physics","volume":"45 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics B: Atomic, Molecular and Optical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6455/ad285c","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
We use an independent electron model with semi-classical approximation to electron dynamics to investigate differential cross sections for electron emission in fast collisions of protons with ammonia molecules. An effective potential model for the electronic orbitals is introduced, and utilized in the context of the classical-trajectory Monte Carlo (CTMC) approach for single-electron dynamics. Cross sections differential in electron emission angle and energy are compared with experimental data. Compared to previous scattering-theory based quantum-mechanical results the time-dependent semi-classical CTMC approach provides results of similar quality for intermediate and high ionized electron energies. We find some discrepancies in the total cross sections for q-fold ionization between the present model and independent-atom-model calculations. The double ionization cross sections are considerably larger than recent experimental data which are derived from coincidence counting of charged fragments. The calculated triple ionization cross sections exceed the experimental coincidence data for q = 3 by several orders of magnitude at intermediate energies.
期刊介绍:
Published twice-monthly (24 issues per year), Journal of Physics B: Atomic, Molecular and Optical Physics covers the study of atoms, ions, molecules and clusters, and their structure and interactions with particles, photons or fields. The journal also publishes articles dealing with those aspects of spectroscopy, quantum optics and non-linear optics, laser physics, astrophysics, plasma physics, chemical physics, optical cooling and trapping and other investigations where the objects of study are the elementary atomic, ionic or molecular properties of processes.