Formulation and optimisation of Ozenoxacin topical nano-emulgel including a comprehensive methodology to qualify and validate the critical parameters of an in-vitro release test method and ex-vivo permeation test.
{"title":"Formulation and optimisation of Ozenoxacin topical nano-emulgel including a comprehensive methodology to qualify and validate the critical parameters of an <i>in-vitro</i> release test method and <i>ex-vivo</i> permeation test.","authors":"Amarnath Reddy Ramireddy, Dilip Kumar Behara","doi":"10.1080/03639045.2024.2327466","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The purpose of this study was to formulate, optimize Ozenoxacin topical nano-emulsion using factorial design followed by to prepare and evaluate nano-emulgel using validated <i>in-vitro</i> release testing (IVRT) technique for determination of Ozenoxacin release rate along with <i>ex-vivo</i> permeation testing (EVPT).Significance: Nano-emulgel is a proven delivery system for poorly soluble substances works by enhancing the solubility and bioavailability. Factorial design provides a systematic and efficient means to study the effect of multiple factors on responses. IVRT is an USP compendia technique utilized for performance analysis of semi-solid formulations.</p><p><strong>Methods: </strong>Nano-emulsion formulation optimization was done with factorial design, evaluated for globule size and % entrapment efficiency (EE). Nano-emulgels were characterized for assay, organic impurities, rheological behavior, IVRT, EVPT, and skin retention studies. IVRT validation was executed using vertical diffusion cells (VDCs).</p><p><strong>Results: </strong>Ozenoxacin nano-emulsion was optimized with 1:1 ratio of Oil: S<sub>mix</sub>, 3:1 ratio of Surfactant:Co-Surfactant, and 15000 RPM of homogenization speed which resulted 414.6 ± 5.2 nm globule size and 92.8 ± 2.1% entrapment efficiency. Results confirmed that IVRT and Reversed Phase - High Performance Liquid Chromatographic techniques were validated as per regulatory guidelines. <i>In-vitro</i>, <i>ex-vivo</i> drug release, and skin retention from the optimized nano-emulgel formulation was comparatively higher (∼1.5 times) than that from the innovator (OZANEX<sup>TM</sup>) formulation.</p><p><strong>Conclusions: </strong>Based on these results, Ozenoxacin nano-emulgel can be considered an effective alternative and was found to be stable at 40 °C/75% RH and 30 °C/75% RH storage condition for 6 months.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03639045.2024.2327466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: The purpose of this study was to formulate, optimize Ozenoxacin topical nano-emulsion using factorial design followed by to prepare and evaluate nano-emulgel using validated in-vitro release testing (IVRT) technique for determination of Ozenoxacin release rate along with ex-vivo permeation testing (EVPT).Significance: Nano-emulgel is a proven delivery system for poorly soluble substances works by enhancing the solubility and bioavailability. Factorial design provides a systematic and efficient means to study the effect of multiple factors on responses. IVRT is an USP compendia technique utilized for performance analysis of semi-solid formulations.
Methods: Nano-emulsion formulation optimization was done with factorial design, evaluated for globule size and % entrapment efficiency (EE). Nano-emulgels were characterized for assay, organic impurities, rheological behavior, IVRT, EVPT, and skin retention studies. IVRT validation was executed using vertical diffusion cells (VDCs).
Results: Ozenoxacin nano-emulsion was optimized with 1:1 ratio of Oil: Smix, 3:1 ratio of Surfactant:Co-Surfactant, and 15000 RPM of homogenization speed which resulted 414.6 ± 5.2 nm globule size and 92.8 ± 2.1% entrapment efficiency. Results confirmed that IVRT and Reversed Phase - High Performance Liquid Chromatographic techniques were validated as per regulatory guidelines. In-vitro, ex-vivo drug release, and skin retention from the optimized nano-emulgel formulation was comparatively higher (∼1.5 times) than that from the innovator (OZANEXTM) formulation.
Conclusions: Based on these results, Ozenoxacin nano-emulgel can be considered an effective alternative and was found to be stable at 40 °C/75% RH and 30 °C/75% RH storage condition for 6 months.