Coordinatively fluxional diazo-based organo-electrocatalyst for conversion of CO2 to C2 and C3 products

Nidhi Kumari , Supriyo Halder , Srijita Naskar , Sanjib Ganguly , Kausikisankar Pramanik , Farzaneh Yari , Adrian Dorniak , Wolfgang Schöfberger , Soumyajit Roy
{"title":"Coordinatively fluxional diazo-based organo-electrocatalyst for conversion of CO2 to C2 and C3 products","authors":"Nidhi Kumari ,&nbsp;Supriyo Halder ,&nbsp;Srijita Naskar ,&nbsp;Sanjib Ganguly ,&nbsp;Kausikisankar Pramanik ,&nbsp;Farzaneh Yari ,&nbsp;Adrian Dorniak ,&nbsp;Wolfgang Schöfberger ,&nbsp;Soumyajit Roy","doi":"10.1016/j.mtcata.2024.100049","DOIUrl":null,"url":null,"abstract":"<div><p>The conversion of carbon dioxide (CO<sub>2</sub>) into valuable chemicals, specifically C<sub>2</sub> and C<sub>3</sub>, through metal-free electrocatalysis remains a formidable challenge. Breaking away from traditional transition metal complexes, the focus is on designing and selecting efficient organic catalysts. In this pursuit, a diazo-based organic bulky ligand emerges as a promising candidate, offering a solution that is both sustainable and renewable. The key feature of this ligand is its low-lying π* (LUMO), enabling it to readily accept an electron in an electrochemical environment when a potential is applied. The synthesized Diazo-based ligands have been meticulously characterized using various techniques, including <sup>1</sup>H NMR, <sup>13</sup>C NMR, UV-Vis, and IR spectroscopy. This diazo-based ligand serves as an electrocatalyst, undergoing reduction to a triplet diradical that acts as a nucleophile. In an aqueous medium, it forms an adduct with CO<sub>2</sub>, leading to the generation of a formyl radical. This radical further couples to produce acetic acid and acetone with efficiencies of 19.6% and 24.2%, respectively, at pH 5.5. To provide a deeper understanding, we present a proposed mechanism pathway supported by <em>in-situ</em> UV-Vis spectroscopy and a comprehensive Density Functional Theory (DFT) study. These findings mark a significant step forward in the field of metal-free electrocatalysis, offering a sustainable approach to the conversion of CO<sub>2</sub> into valuable chemicals, contributing to the development of renewable and environmentally friendly systems.</p></div>","PeriodicalId":100892,"journal":{"name":"Materials Today Catalysis","volume":"5 ","pages":"Article 100049"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949754X24000115/pdfft?md5=94dc782f0ba3555c82d1b17231c8d404&pid=1-s2.0-S2949754X24000115-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949754X24000115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The conversion of carbon dioxide (CO2) into valuable chemicals, specifically C2 and C3, through metal-free electrocatalysis remains a formidable challenge. Breaking away from traditional transition metal complexes, the focus is on designing and selecting efficient organic catalysts. In this pursuit, a diazo-based organic bulky ligand emerges as a promising candidate, offering a solution that is both sustainable and renewable. The key feature of this ligand is its low-lying π* (LUMO), enabling it to readily accept an electron in an electrochemical environment when a potential is applied. The synthesized Diazo-based ligands have been meticulously characterized using various techniques, including 1H NMR, 13C NMR, UV-Vis, and IR spectroscopy. This diazo-based ligand serves as an electrocatalyst, undergoing reduction to a triplet diradical that acts as a nucleophile. In an aqueous medium, it forms an adduct with CO2, leading to the generation of a formyl radical. This radical further couples to produce acetic acid and acetone with efficiencies of 19.6% and 24.2%, respectively, at pH 5.5. To provide a deeper understanding, we present a proposed mechanism pathway supported by in-situ UV-Vis spectroscopy and a comprehensive Density Functional Theory (DFT) study. These findings mark a significant step forward in the field of metal-free electrocatalysis, offering a sustainable approach to the conversion of CO2 into valuable chemicals, contributing to the development of renewable and environmentally friendly systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将 CO2 转化为 C2 和 C3 产物的配位通性重氮基有机电催化剂
通过无金属电催化将二氧化碳(CO2)转化为有价值的化学品,特别是 C2 和 C3,仍然是一项艰巨的挑战。突破传统的过渡金属复合物,重点在于设计和选择高效的有机催化剂。在这一过程中,一种基于重氮的有机大块配体成为一种很有前途的候选物质,它提供了一种既可持续又可再生的解决方案。这种配体的主要特点是其低洼π*(LUMO),使其能够在施加电势的电化学环境中随时接受电子。我们利用各种技术,包括 1H NMR、13C NMR、UV-Vis 和 IR 光谱,对合成的重氮配体进行了细致的表征。这种重氮配体是一种电催化剂,可还原成三重二价,并作为亲核体。在水介质中,它与 CO2 形成加合物,生成甲酰基。这种自由基进一步偶联生成醋酸和丙酮,在 pH 值为 5.5 时,生成效率分别为 19.6% 和 24.2%。为了加深理解,我们通过原位紫外可见光谱和全面的密度泛函理论(DFT)研究,提出了一种拟议的机理途径。这些发现标志着无金属电催化领域向前迈出了重要一步,为将 CO2 转化为有价值的化学品提供了一种可持续的方法,有助于开发可再生和环境友好型系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
0
期刊最新文献
Facet engineering of Weyl semimetals for efficient hydrogen evolution reaction Coupling cobalt single-atom catalyst with recyclable LiBr redox mediator enables stable LiOH-based Li-O2 batteries Modulating selectivity and stability of the direct seawater electrolysis for sustainable green hydrogen production Oxygen vacancy-mediated high-entropy oxide electrocatalysts for efficient oxygen evolution reaction Multilayered molybdenum carbonitride MXene: Reductive defunctionalization, thermal stability, and catalysis of ammonia synthesis and decomposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1