Modulating selectivity and stability of the direct seawater electrolysis for sustainable green hydrogen production

Dazhi Yao , Chun Liu , Yanzhao Zhang , Shuhao Wang , Yan Nie , Man Qiao , Dongdong Zhu
{"title":"Modulating selectivity and stability of the direct seawater electrolysis for sustainable green hydrogen production","authors":"Dazhi Yao ,&nbsp;Chun Liu ,&nbsp;Yanzhao Zhang ,&nbsp;Shuhao Wang ,&nbsp;Yan Nie ,&nbsp;Man Qiao ,&nbsp;Dongdong Zhu","doi":"10.1016/j.mtcata.2025.100089","DOIUrl":null,"url":null,"abstract":"<div><div>Direct seawater electrolysis (DSE) has emerged as a compelling route to sustainable hydrogen production, leveraging the vast global reserves of seawater. However, the inherently complex composition of seawater—laden with halide ions, multivalent cations (Mg<sup>2</sup><sup>+</sup>, Ca<sup>2+</sup>), and organic/biological impurities—presents formidable challenges in maintaining both selectivity and durability. Chief among these obstacles is mitigating chloride corrosion and suppressing chlorine evolution reaction (ClER) at the anode, while also preventing the precipitation of magnesium and calcium hydroxides at the cathode. This review consolidates recent advances in material engineering and cell design strategies aimed at controlling undesired side reactions, enhancing electrode stability, and maximizing energy efficiency in DSE. We first outline the fundamental thermodynamic and kinetic hurdles introduced by Cl<sup>−</sup> and other impurities. This discussion highlights how these factors accelerate catalyst degradation and drive suboptimal reaction pathways. We then delve into innovative approaches to improve selectivity and durability of DSE—such as engineering protective barrier layers, tuning electrolyte interfaces, developing corrosion-resistant materials, and techniques to minimize Mg/Ca-related precipitations. Finally, we explore emerging reactor configurations, including asymmetric and membrane-free electrolyzers, which address some barriers for DSE commercialization. Collectively, these insights provide a framework for designing next-generation DSE systems, which can achieve large-scale, cost-effective, and environmentally benign hydrogen production.</div></div>","PeriodicalId":100892,"journal":{"name":"Materials Today Catalysis","volume":"8 ","pages":"Article 100089"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949754X2500002X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Direct seawater electrolysis (DSE) has emerged as a compelling route to sustainable hydrogen production, leveraging the vast global reserves of seawater. However, the inherently complex composition of seawater—laden with halide ions, multivalent cations (Mg2+, Ca2+), and organic/biological impurities—presents formidable challenges in maintaining both selectivity and durability. Chief among these obstacles is mitigating chloride corrosion and suppressing chlorine evolution reaction (ClER) at the anode, while also preventing the precipitation of magnesium and calcium hydroxides at the cathode. This review consolidates recent advances in material engineering and cell design strategies aimed at controlling undesired side reactions, enhancing electrode stability, and maximizing energy efficiency in DSE. We first outline the fundamental thermodynamic and kinetic hurdles introduced by Cl and other impurities. This discussion highlights how these factors accelerate catalyst degradation and drive suboptimal reaction pathways. We then delve into innovative approaches to improve selectivity and durability of DSE—such as engineering protective barrier layers, tuning electrolyte interfaces, developing corrosion-resistant materials, and techniques to minimize Mg/Ca-related precipitations. Finally, we explore emerging reactor configurations, including asymmetric and membrane-free electrolyzers, which address some barriers for DSE commercialization. Collectively, these insights provide a framework for designing next-generation DSE systems, which can achieve large-scale, cost-effective, and environmentally benign hydrogen production.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
0
期刊最新文献
Facet engineering of Weyl semimetals for efficient hydrogen evolution reaction Coupling cobalt single-atom catalyst with recyclable LiBr redox mediator enables stable LiOH-based Li-O2 batteries Modulating selectivity and stability of the direct seawater electrolysis for sustainable green hydrogen production Oxygen vacancy-mediated high-entropy oxide electrocatalysts for efficient oxygen evolution reaction Multilayered molybdenum carbonitride MXene: Reductive defunctionalization, thermal stability, and catalysis of ammonia synthesis and decomposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1