Coupling cobalt single-atom catalyst with recyclable LiBr redox mediator enables stable LiOH-based Li-O2 batteries

Kang Huang , Zhixiu Lu , Shilong Dai , Chunyu Cui , Nam Dong Kim , Huilong Fei
{"title":"Coupling cobalt single-atom catalyst with recyclable LiBr redox mediator enables stable LiOH-based Li-O2 batteries","authors":"Kang Huang ,&nbsp;Zhixiu Lu ,&nbsp;Shilong Dai ,&nbsp;Chunyu Cui ,&nbsp;Nam Dong Kim ,&nbsp;Huilong Fei","doi":"10.1016/j.mtcata.2025.100090","DOIUrl":null,"url":null,"abstract":"<div><div>Cycling Li-O<sub>2</sub> batteries (LOBs) via LiOH is promising for developing practically viable batteries, while promoting the formation and decomposition of LiOH remains a challenge. Cobalt single atom catalysts (Co-SACs) have been exploited to mediate the direct 4e<sup>−</sup> oxygen reduction reaction for generating LiOH discharge products, but their inferior oxygen evolution activity renders the battery low energy efficiency and poor cycling life. Herein, we for the first time introduce LiBr redox mediator (RM) into the Co-SACs-catalyzed LOB system to facilitate the decomposition of LiOH. In the discharge process, the catalysis of Co-SAC is unaffected with the presence of LiBr. During charging, Br<sub>3</sub><sup>−</sup> is identified as the oxidizer to decompose LiOH at an appropriate potential (3.6 V). Significantly, the soluble Br<sup>−</sup>‬‬‬‬‬ is recyclable in the system as the BrO<sup>−</sup> intermediate‬‬‬‬‬‬‬‬‬‬ could shuttle to the anode and react with Li metal to regenerate Br<sup>−</sup>‬‬‬‬‬ ‬‬so that the generation of LiBrO<sub>3</sub> deposit is circumvented‬‬‬‬‬‬‬‬. Consequently, the fabricated LOB demonstrates fewer side reactions, stable energy efficiency (drop rate of 0.10 % per cycle) and long cycle life (300 cycles at 1000 mA/g) under the ambient atmosphere.‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬</div></div>","PeriodicalId":100892,"journal":{"name":"Materials Today Catalysis","volume":"8 ","pages":"Article 100090"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949754X25000031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cycling Li-O2 batteries (LOBs) via LiOH is promising for developing practically viable batteries, while promoting the formation and decomposition of LiOH remains a challenge. Cobalt single atom catalysts (Co-SACs) have been exploited to mediate the direct 4e oxygen reduction reaction for generating LiOH discharge products, but their inferior oxygen evolution activity renders the battery low energy efficiency and poor cycling life. Herein, we for the first time introduce LiBr redox mediator (RM) into the Co-SACs-catalyzed LOB system to facilitate the decomposition of LiOH. In the discharge process, the catalysis of Co-SAC is unaffected with the presence of LiBr. During charging, Br3 is identified as the oxidizer to decompose LiOH at an appropriate potential (3.6 V). Significantly, the soluble Br‬‬‬‬‬ is recyclable in the system as the BrO intermediate‬‬‬‬‬‬‬‬‬‬ could shuttle to the anode and react with Li metal to regenerate Br‬‬‬‬‬ ‬‬so that the generation of LiBrO3 deposit is circumvented‬‬‬‬‬‬‬‬. Consequently, the fabricated LOB demonstrates fewer side reactions, stable energy efficiency (drop rate of 0.10 % per cycle) and long cycle life (300 cycles at 1000 mA/g) under the ambient atmosphere.‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
0
期刊最新文献
Facet engineering of Weyl semimetals for efficient hydrogen evolution reaction Coupling cobalt single-atom catalyst with recyclable LiBr redox mediator enables stable LiOH-based Li-O2 batteries Modulating selectivity and stability of the direct seawater electrolysis for sustainable green hydrogen production Oxygen vacancy-mediated high-entropy oxide electrocatalysts for efficient oxygen evolution reaction Multilayered molybdenum carbonitride MXene: Reductive defunctionalization, thermal stability, and catalysis of ammonia synthesis and decomposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1