Facet engineering of Weyl semimetals for efficient hydrogen evolution reaction

Ting Wai Lau , Qiong Lei , Jun Yin
{"title":"Facet engineering of Weyl semimetals for efficient hydrogen evolution reaction","authors":"Ting Wai Lau ,&nbsp;Qiong Lei ,&nbsp;Jun Yin","doi":"10.1016/j.mtcata.2025.100091","DOIUrl":null,"url":null,"abstract":"<div><div>The design of highly efficient hydrogen evolution reaction (HER) catalysts is a critical challenge in advancing electrochemical water splitting for renewable energy applications. Topological semimetals have recently emerged as promising candidates for HER catalysis; however, the relationship between their topological surface properties and catalytic performance remains poorly understood. Herein, we employ density functional theory (DFT) calculations to investigate the impact of facets on the HER activity of topological TaAs semimetal family (TaAs, NbP, NbAs, and TaP). Our results reveal that topological surface states persist across various facets, and facets with lower coordination numbers exhibit greater stability. Four key theoretical descriptors—Gibbs free energy changes, surface energy, energy barriers for water dissociation, and water adsorption energy—are assessed to provide a comprehensive evaluation of HER activity. For all four compounds, (111) and metal-rich (001) facets exhibit optimal energy values across these metrics, outperforming the benchmark Pt (111). The number of Fermi arcs is found to have a minimal influence on HER activity. Changes in the projected density of states (PDOS) of surface atoms strongly correlate with Δ<em>G</em><sub>H*</sub>, serving as a more effective indicator of HER activity. These findings highlight the importance of a holistic evaluation framework that extends beyond Gibbs free energy changes alone, incorporating multiple factors to identify high-performance catalysts. This work provides new insights into the design principles for topological catalysts in HER and offers valuable guidance for developing next generation of electrocatalysts.</div></div>","PeriodicalId":100892,"journal":{"name":"Materials Today Catalysis","volume":"8 ","pages":"Article 100091"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949754X25000043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The design of highly efficient hydrogen evolution reaction (HER) catalysts is a critical challenge in advancing electrochemical water splitting for renewable energy applications. Topological semimetals have recently emerged as promising candidates for HER catalysis; however, the relationship between their topological surface properties and catalytic performance remains poorly understood. Herein, we employ density functional theory (DFT) calculations to investigate the impact of facets on the HER activity of topological TaAs semimetal family (TaAs, NbP, NbAs, and TaP). Our results reveal that topological surface states persist across various facets, and facets with lower coordination numbers exhibit greater stability. Four key theoretical descriptors—Gibbs free energy changes, surface energy, energy barriers for water dissociation, and water adsorption energy—are assessed to provide a comprehensive evaluation of HER activity. For all four compounds, (111) and metal-rich (001) facets exhibit optimal energy values across these metrics, outperforming the benchmark Pt (111). The number of Fermi arcs is found to have a minimal influence on HER activity. Changes in the projected density of states (PDOS) of surface atoms strongly correlate with ΔGH*, serving as a more effective indicator of HER activity. These findings highlight the importance of a holistic evaluation framework that extends beyond Gibbs free energy changes alone, incorporating multiple factors to identify high-performance catalysts. This work provides new insights into the design principles for topological catalysts in HER and offers valuable guidance for developing next generation of electrocatalysts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
0
期刊最新文献
Facet engineering of Weyl semimetals for efficient hydrogen evolution reaction Coupling cobalt single-atom catalyst with recyclable LiBr redox mediator enables stable LiOH-based Li-O2 batteries Modulating selectivity and stability of the direct seawater electrolysis for sustainable green hydrogen production Oxygen vacancy-mediated high-entropy oxide electrocatalysts for efficient oxygen evolution reaction Multilayered molybdenum carbonitride MXene: Reductive defunctionalization, thermal stability, and catalysis of ammonia synthesis and decomposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1