Flexible and wearable battery-free backscatter wireless communication system for colour imaging

IF 12.3 1区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC npj Flexible Electronics Pub Date : 2024-03-14 DOI:10.1038/s41528-024-00304-4
Jun-Lin Zhan, Wei-Bing Lu, Cong Ding, Zhen Sun, Bu-Yun Yu, Lu Ju, Xin-Hua Liang, Zhao-Min Chen, Hao Chen, Yong-Hao Jia, Zhen-Guo Liu, Tie-Jun Cui
{"title":"Flexible and wearable battery-free backscatter wireless communication system for colour imaging","authors":"Jun-Lin Zhan, Wei-Bing Lu, Cong Ding, Zhen Sun, Bu-Yun Yu, Lu Ju, Xin-Hua Liang, Zhao-Min Chen, Hao Chen, Yong-Hao Jia, Zhen-Guo Liu, Tie-Jun Cui","doi":"10.1038/s41528-024-00304-4","DOIUrl":null,"url":null,"abstract":"Wireless imaging, equipped with ultralow power wireless communications and energy harvesting (EH) capabilities, have emerged as battery-free and sustainable solutions. However, the challenge of implementing wireless colour imaging in wearable applications remains, primarily due to high power demands and the need to balance energy harvesting efficiency with device compactness. To address these issues, we propose a flexible and wearable battery-free backscatter wireless communication system specially designed for colour imaging. The system features a hybrid RF-solar EH array that efficiently harvests energy from both ambient RF and visible light energy, ensuring continuous operation in diverse environments. Moreover, flexible materials allow the working system to conform to the human body, ensuring comfort, user-friendliness, and safety. Furthermore, a compact design utilizing a shared-aperture antenna array for simultaneous wireless information and power transfer (SWIPT), coupled with an optically transparent stacked structure. This design not only optimizes space but also maintains the performance of both communication and EH processes. The proposed flexible and wearable systems for colour imaging would have potentially applications in environmental monitoring, object detection, and law enforcement recording. This approach demonstrates a sustainable and practical solution for the next generation of wearable, power-demanding devices.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":" ","pages":"1-9"},"PeriodicalIF":12.3000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-024-00304-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41528-024-00304-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Wireless imaging, equipped with ultralow power wireless communications and energy harvesting (EH) capabilities, have emerged as battery-free and sustainable solutions. However, the challenge of implementing wireless colour imaging in wearable applications remains, primarily due to high power demands and the need to balance energy harvesting efficiency with device compactness. To address these issues, we propose a flexible and wearable battery-free backscatter wireless communication system specially designed for colour imaging. The system features a hybrid RF-solar EH array that efficiently harvests energy from both ambient RF and visible light energy, ensuring continuous operation in diverse environments. Moreover, flexible materials allow the working system to conform to the human body, ensuring comfort, user-friendliness, and safety. Furthermore, a compact design utilizing a shared-aperture antenna array for simultaneous wireless information and power transfer (SWIPT), coupled with an optically transparent stacked structure. This design not only optimizes space but also maintains the performance of both communication and EH processes. The proposed flexible and wearable systems for colour imaging would have potentially applications in environmental monitoring, object detection, and law enforcement recording. This approach demonstrates a sustainable and practical solution for the next generation of wearable, power-demanding devices.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于彩色成像的灵活、可穿戴、无需电池的反向散射无线通信系统
配备超低功耗无线通信和能量收集(EH)功能的无线成像技术已成为无电池和可持续的解决方案。然而,在可穿戴应用中实现无线彩色成像的挑战依然存在,这主要是由于高功率需求以及平衡能量收集效率和设备紧凑性的需要。为了解决这些问题,我们提出了一种专为彩色成像设计的灵活、可穿戴、无需电池的反向散射无线通信系统。该系统采用混合射频-太阳能 EH 阵列,可从环境射频和可见光能量中有效采集能量,确保在不同环境中持续工作。此外,柔性材料使工作系统能够贴合人体,确保舒适性、用户友好性和安全性。此外,利用共享孔径天线阵列进行同步无线信息和功率传输(SWIPT)的紧凑型设计与光学透明叠层结构相结合。这种设计不仅优化了空间,还保持了通信和 EH 过程的性能。所建议的灵活可穿戴彩色成像系统可应用于环境监测、物体探测和执法记录。这种方法为下一代耗电的可穿戴设备提供了一种可持续的实用解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.10
自引率
4.80%
发文量
91
审稿时长
6 weeks
期刊介绍: npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.
期刊最新文献
Autonomous self-healing in a stretchable polybutadiene-based urethane and eutectic gallium indium conductive composite Tailoring threshold voltage of R2R printed SWCNT thin film transistors for realizing 4 bit ALU Flash synthesis of high-performance and color-tunable copper(I)-based cluster scintillators for efficient dynamic X-ray imaging Full textile-based body-coupled electrical stimulation for wireless, battery-free, and wearable bioelectronics Unobstructive and safe-to-wear watt-level wireless charger
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1