Phyto-fabricated ZnO nanoparticles for anticancer, photo-antimicrobial effect on carbapenem-resistant/sensitive Pseudomonas aeruginosa and removal of tetracycline.

IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Bioprocess and Biosystems Engineering Pub Date : 2024-08-01 Epub Date: 2024-03-16 DOI:10.1007/s00449-024-02984-8
Gopinath Venkatraman, Priyadarshini Sakthi Mohan, Maryam Mohammed Mashghan, Kar-Cheng Wong, Puteri Shafinaz Abdul-Rahman, Kumutha Malar Vellasamy, Abdurahman Hajinur Hirad, Abdullah A Alarfaj, Shifa Wang
{"title":"Phyto-fabricated ZnO nanoparticles for anticancer, photo-antimicrobial effect on carbapenem-resistant/sensitive Pseudomonas aeruginosa and removal of tetracycline.","authors":"Gopinath Venkatraman, Priyadarshini Sakthi Mohan, Maryam Mohammed Mashghan, Kar-Cheng Wong, Puteri Shafinaz Abdul-Rahman, Kumutha Malar Vellasamy, Abdurahman Hajinur Hirad, Abdullah A Alarfaj, Shifa Wang","doi":"10.1007/s00449-024-02984-8","DOIUrl":null,"url":null,"abstract":"<p><p>Alternanthera sessilis (AS) leaf extract was used to synthesize zinc oxide nanoparticles (ZnO NPs). Bioanalytical characterization techniques such as X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM) confirmed the formation of crystalline ZnO NPs with average sizes of 40 nm. The AS-ZnO NPs antimicrobial activity was analyzed under dark (D) and white light (WL) conditions. The improved antimicrobial activity was observed against Escherichia coli, Staphylococcus aureus and Bacillus subtilis at the minimal inhibitory concentration (MIC) of 125 and 62.5 µg/mL under WL than the D at 125 and 250 µg/mL for E. coli, B. subtilis, and Pseudomonas aeruginosa, respectively. In contrast, the growth of P. aeruginosa and S. aureus was not completely inhibited until 1 mg/mL AS-ZnO NPs under WL and D. Similarly, AS-ZnO NPs displayed a weaker inhibitory effect against carbapenem-sensitive P. aeruginosa (CSPA) and carbapenem-resistant P. aeruginosa (CRPA) strains of PAC023, PAC041 and PAC032, PAC045 under D. Interestingly, the distinct inhibitory effect was recorded against CSPA PAC041 and CRPA PAC032 in which the bacteria growth was inhibited 99.9% at 250, 500 µg/mL under WL. The cytotoxicity results suggested AS-ZnO NPs demonstrated higher toxicity to MCF-7 breast cancer cells than the RAW264.7 macrophage cells. Further, AS-ZnO NPs exhibited higher catalytic potential against tetracycline hydrochloride (TC-H) degradation at 65.6% and 60.8% under WL than the dark at 59.35% and 48.6% within 120 min. Therefore, AS-ZnO NPs can be used to design a photo-improved antimicrobial formulation and environmental catalyst for removing TC-H from wastewater.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-024-02984-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Alternanthera sessilis (AS) leaf extract was used to synthesize zinc oxide nanoparticles (ZnO NPs). Bioanalytical characterization techniques such as X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM) confirmed the formation of crystalline ZnO NPs with average sizes of 40 nm. The AS-ZnO NPs antimicrobial activity was analyzed under dark (D) and white light (WL) conditions. The improved antimicrobial activity was observed against Escherichia coli, Staphylococcus aureus and Bacillus subtilis at the minimal inhibitory concentration (MIC) of 125 and 62.5 µg/mL under WL than the D at 125 and 250 µg/mL for E. coli, B. subtilis, and Pseudomonas aeruginosa, respectively. In contrast, the growth of P. aeruginosa and S. aureus was not completely inhibited until 1 mg/mL AS-ZnO NPs under WL and D. Similarly, AS-ZnO NPs displayed a weaker inhibitory effect against carbapenem-sensitive P. aeruginosa (CSPA) and carbapenem-resistant P. aeruginosa (CRPA) strains of PAC023, PAC041 and PAC032, PAC045 under D. Interestingly, the distinct inhibitory effect was recorded against CSPA PAC041 and CRPA PAC032 in which the bacteria growth was inhibited 99.9% at 250, 500 µg/mL under WL. The cytotoxicity results suggested AS-ZnO NPs demonstrated higher toxicity to MCF-7 breast cancer cells than the RAW264.7 macrophage cells. Further, AS-ZnO NPs exhibited higher catalytic potential against tetracycline hydrochloride (TC-H) degradation at 65.6% and 60.8% under WL than the dark at 59.35% and 48.6% within 120 min. Therefore, AS-ZnO NPs can be used to design a photo-improved antimicrobial formulation and environmental catalyst for removing TC-H from wastewater.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于抗癌、对碳青霉烯耐药/敏感铜绿假单胞菌的光抗菌作用以及去除四环素的植物制备氧化锌纳米粒子。
Alternanthera sessilis(AS)叶提取物被用来合成氧化锌纳米粒子(ZnO NPs)。X 射线衍射(XRD)和场发射扫描电子显微镜(FESEM)等生物分析表征技术证实了平均尺寸为 40 nm 的结晶 ZnO NPs 的形成。在黑暗(D)和白光(WL)条件下分析了 AS-ZnO NPs 的抗菌活性。对大肠杆菌、金黄色葡萄球菌和枯草芽孢杆菌的最小抑菌浓度(MIC)分别为 125 微克/毫升和 62.5 微克/毫升时,在 WL 条件下,AS-ZnO NPs 的抗菌活性比在 D 条件下的 125 微克/毫升和 250 微克/毫升有所提高。同样,AS-ZnO NPs 对碳青霉烯敏感的铜绿假单胞菌(CSPA)和碳青霉烯耐药的铜绿假单胞菌(CRPA)的抑制作用也较弱。有趣的是,As-ZnO NPs 对碳青霉烯敏感的铜绿假单胞菌(CSPA)和碳青霉烯耐药的铜绿假单胞菌(CRPA)菌株 PAC023、PAC041 和 PAC032、PAC045 有明显的抑制作用。细胞毒性结果表明,AS-ZnO NPs 对 MCF-7 乳腺癌细胞的毒性高于 RAW264.7 巨噬细胞。此外,在 120 分钟内,AS-ZnO NPs 在 WL 下对盐酸四环素(TC-H)降解的催化潜力分别为 65.6% 和 60.8%,高于黑暗条件下的 59.35% 和 48.6%。因此,AS-ZnO NPs 可用于设计一种光改进的抗菌配方和环境催化剂,以去除废水中的 TC-H。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioprocess and Biosystems Engineering
Bioprocess and Biosystems Engineering 工程技术-工程:化工
CiteScore
7.90
自引率
2.60%
发文量
147
审稿时长
2.6 months
期刊介绍: Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes. Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged. The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.
期刊最新文献
A Review of Fucoxanthin Biomanufacturing from Phaeodactylum tricornutum. Isolation of native microorganisms from Shengli lignite and study on their ability to dissolve lignite. Enhancement of ε-poly-L-lysine production by Streptomyces albulus FQF-24 with feeding strategies using cassava starch as carbon source. Consolidated bioprocessing of lignocellulosic wastes in Northwest China for D-glucaric acid production by an artificial microbial consortium. Encapsulation of Candida antarctica lipase B in metal-organic framework under ultrasound and using it to one-pot synthesis of 1,3,4,5-tetrasubstituted pyrazoles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1