{"title":"An acceleration method employing sparse sensing matrix for fast analysis of the wide-angle electromagnetic problems based on compressive sensing","authors":"Qi Qi, Xinyuan Cao, Yi Liu, Meng Kong, Xiaojing Kuang, Mingsheng Chen","doi":"10.1017/s1759078724000291","DOIUrl":null,"url":null,"abstract":"<p>The electromagnetic scattering problem over a wide incident angle can be rapidly solved by introducing the compressive sensing theory into the method of moments, whose main computational complexity is comprised of two parts: a few calculations of matrix equations and the recovery of original induced currents. To further improve the method, a novel construction scheme of measurement matrix is proposed in this paper. With the help of the measurement matrix, one can obtain a sparse sensing matrix, and consequently the computational cost for recovery can be reduced by at least half. The scheme is described in detail, and the analysis of computational complexity and numerical experiments are provided to demonstrate the effectiveness.</p>","PeriodicalId":49052,"journal":{"name":"International Journal of Microwave and Wireless Technologies","volume":"19 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microwave and Wireless Technologies","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s1759078724000291","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The electromagnetic scattering problem over a wide incident angle can be rapidly solved by introducing the compressive sensing theory into the method of moments, whose main computational complexity is comprised of two parts: a few calculations of matrix equations and the recovery of original induced currents. To further improve the method, a novel construction scheme of measurement matrix is proposed in this paper. With the help of the measurement matrix, one can obtain a sparse sensing matrix, and consequently the computational cost for recovery can be reduced by at least half. The scheme is described in detail, and the analysis of computational complexity and numerical experiments are provided to demonstrate the effectiveness.
期刊介绍:
The prime objective of the International Journal of Microwave and Wireless Technologies is to enhance the communication between microwave engineers throughout the world. It is therefore interdisciplinary and application oriented, providing a platform for the microwave industry. Coverage includes: applied electromagnetic field theory (antennas, transmission lines and waveguides), components (passive structures and semiconductor device technologies), analogue and mixed-signal circuits, systems, optical-microwave interactions, electromagnetic compatibility, industrial applications, biological effects and medical applications.