Enhancing information freshness in multi-class mobile edge computing systems using a hybrid discipline

IF 3.3 3区 计算机科学 Q2 COMPUTER SCIENCE, THEORY & METHODS Computing Pub Date : 2024-03-19 DOI:10.1007/s00607-024-01278-x
Tamer E. Fahim, Sherif I. Rabia, Ahmed H. Abd El-Malek, Waheed K. Zahra
{"title":"Enhancing information freshness in multi-class mobile edge computing systems using a hybrid discipline","authors":"Tamer E. Fahim, Sherif I. Rabia, Ahmed H. Abd El-Malek, Waheed K. Zahra","doi":"10.1007/s00607-024-01278-x","DOIUrl":null,"url":null,"abstract":"<p>Timely status updating in mobile edge computing (MEC) systems has recently gained the utmost interest in internet of things (IoT) networks, where status updates may need higher computations to be interpreted. Moreover, in real-life situations, the status update streams may also be of different priority classes according to their importance and timeliness constraints. The classical disciplines used for priority service differentiation, preemptive and non-preemptive disciplines, pose a dilemma of information freshness dissatisfaction for the whole priority network. This work proposes a hybrid preemptive/non-preemptive discipline under an M/M/1/2 priority queueing model to regulate the priority-based contention of the status update streams in MEC systems. For this hybrid discipline, a probabilistic discretionary rule for preemption is deployed to govern the server and buffer access independently, introducing distinct probability parameters to control the system performance. The stochastic hybrid system approach is utilized to analyze the average age of information (AoI) along with its higher moments for any number of classes. Then, a numerical study on a three-class network is conducted by evaluating the average AoI performance and the corresponding dispersion. The numerical observations underpin the significance of the hybrid-discipline parameters in ensuring the reliability of the whole priority network. Hence, four different approaches are introduced to demonstrate the setting of these parameters. Under these approaches, some outstanding features are manifested: exploiting the buffering resources efficiently, conserving the aggregate sensing power, and optimizing the whole network satisfaction. For this last feature, a near-optimal low-complex heuristic method is proposed.</p>","PeriodicalId":10718,"journal":{"name":"Computing","volume":"7 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00607-024-01278-x","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Timely status updating in mobile edge computing (MEC) systems has recently gained the utmost interest in internet of things (IoT) networks, where status updates may need higher computations to be interpreted. Moreover, in real-life situations, the status update streams may also be of different priority classes according to their importance and timeliness constraints. The classical disciplines used for priority service differentiation, preemptive and non-preemptive disciplines, pose a dilemma of information freshness dissatisfaction for the whole priority network. This work proposes a hybrid preemptive/non-preemptive discipline under an M/M/1/2 priority queueing model to regulate the priority-based contention of the status update streams in MEC systems. For this hybrid discipline, a probabilistic discretionary rule for preemption is deployed to govern the server and buffer access independently, introducing distinct probability parameters to control the system performance. The stochastic hybrid system approach is utilized to analyze the average age of information (AoI) along with its higher moments for any number of classes. Then, a numerical study on a three-class network is conducted by evaluating the average AoI performance and the corresponding dispersion. The numerical observations underpin the significance of the hybrid-discipline parameters in ensuring the reliability of the whole priority network. Hence, four different approaches are introduced to demonstrate the setting of these parameters. Under these approaches, some outstanding features are manifested: exploiting the buffering resources efficiently, conserving the aggregate sensing power, and optimizing the whole network satisfaction. For this last feature, a near-optimal low-complex heuristic method is proposed.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用混合学科提高多类移动边缘计算系统的信息新鲜度
移动边缘计算(MEC)系统中的及时状态更新最近在物联网(IoT)网络中获得了极大的关注,因为状态更新可能需要更高的计算量才能解读。此外,在现实生活中,状态更新流也可能根据其重要性和及时性限制而具有不同的优先级。用于区分优先级服务的经典规则--抢占式规则和非抢占式规则--给整个优先级网络带来了信息新鲜度不满意的困境。本研究提出了一种 M/M/1/2 优先级队列模型下的混合抢占/非抢占规则,用于调节 MEC 系统中基于优先级的状态更新流争用。对于这种混合纪律,采用了一种概率自由裁量抢占规则,以独立管理服务器和缓冲区的访问,并引入不同的概率参数来控制系统性能。利用随机混合系统方法分析了任意数量类别的平均信息年龄(AoI)及其高阶矩。然后,通过评估平均 AoI 性能和相应的离散性,对三类网络进行了数值研究。数值观测结果证明了混合学科参数在确保整个优先级网络可靠性方面的重要性。因此,介绍了四种不同的方法来演示这些参数的设置。在这些方法中,一些突出的特点得到了体现:有效利用缓冲资源、节约总感应功率以及优化整个网络的满意度。针对最后一个特点,提出了一种接近最优的低复杂度启发式方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computing
Computing 工程技术-计算机:理论方法
CiteScore
8.20
自引率
2.70%
发文量
107
审稿时长
3 months
期刊介绍: Computing publishes original papers, short communications and surveys on all fields of computing. The contributions should be written in English and may be of theoretical or applied nature, the essential criteria are computational relevance and systematic foundation of results.
期刊最新文献
Mapping and just-in-time traffic congestion mitigation for emergency vehicles in smart cities Fog intelligence for energy efficient management in smart street lamps Contextual authentication of users and devices using machine learning Multi-objective service composition optimization problem in IoT for agriculture 4.0 Robust evaluation of GPU compute instances for HPC and AI in the cloud: a TOPSIS approach with sensitivity, bootstrapping, and non-parametric analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1