{"title":"Mapping and just-in-time traffic congestion mitigation for emergency vehicles in smart cities","authors":"Syed Ali Haider, Junaid A. Zubairi, Sahar Idwan","doi":"10.1007/s00607-024-01345-3","DOIUrl":null,"url":null,"abstract":"<p>Traffic congestion in urban areas poses several challenges to municipal authorities including pollution, productivity loss, reckless driving, and delays in dealing with emergencies. Smart cities can use modern IoT infrastructure to solve the congestion problem and reduce pollution and delays. In this article, we focus on congestion mapping and mitigation for emergency vehicles in smart cities. We use a novel traffic light control technique to change the flow of cars on lights of interest thereby making way for emergency vehicles. We use a simulation model for a selected area of Manhattan to implement congestion mapping and to help find the fastest path for routing emergency vehicles based on the congestion metrics. The system controls traffic lights to block off the roads feeding into congestion and allows flow away from the congested path. This helps in clearing the preferred route to help emergency vehicles reach the destination faster. We show that the proposed algorithm can map congestion on city roads with accuracy thus helping to improve the response time of the emergency services and saving precious lives.</p>","PeriodicalId":10718,"journal":{"name":"Computing","volume":"40 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00607-024-01345-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Traffic congestion in urban areas poses several challenges to municipal authorities including pollution, productivity loss, reckless driving, and delays in dealing with emergencies. Smart cities can use modern IoT infrastructure to solve the congestion problem and reduce pollution and delays. In this article, we focus on congestion mapping and mitigation for emergency vehicles in smart cities. We use a novel traffic light control technique to change the flow of cars on lights of interest thereby making way for emergency vehicles. We use a simulation model for a selected area of Manhattan to implement congestion mapping and to help find the fastest path for routing emergency vehicles based on the congestion metrics. The system controls traffic lights to block off the roads feeding into congestion and allows flow away from the congested path. This helps in clearing the preferred route to help emergency vehicles reach the destination faster. We show that the proposed algorithm can map congestion on city roads with accuracy thus helping to improve the response time of the emergency services and saving precious lives.
期刊介绍:
Computing publishes original papers, short communications and surveys on all fields of computing. The contributions should be written in English and may be of theoretical or applied nature, the essential criteria are computational relevance and systematic foundation of results.