Fog intelligence for energy efficient management in smart street lamps

IF 3.3 3区 计算机科学 Q2 COMPUTER SCIENCE, THEORY & METHODS Computing Pub Date : 2024-09-13 DOI:10.1007/s00607-024-01348-0
J. Angela Jennifa Sujana, R. Venitta Raj, V. K. Raja Priya
{"title":"Fog intelligence for energy efficient management in smart street lamps","authors":"J. Angela Jennifa Sujana, R. Venitta Raj, V. K. Raja Priya","doi":"10.1007/s00607-024-01348-0","DOIUrl":null,"url":null,"abstract":"<p>Street lamp is a great asset for human society with a narrow beam spread light. The extensive proliferation of solar power in street lamps causes power outages due to their variable power-generated profiles. Thus Smart Street Lamp Fog Intelligence (SSLFI) framework based on hierarchical learning was proposed for efficient energy management in solar street lamps. Smart Street Lamp (SSL) shifts its brightness at higher and lower light levels with a comforting, energy-efficient gleam of light. The fog intelligence framework forecasts the SSL output power through short-term probabilistic energy consumption forecasts using Q-NARX-BiLSTM (Quantile Regression-Nonlinear Auto-Regressive Neural Networks with exogenous input-Bidirectional Long short-term memory) model. NARX-BiLSTM of two module types: (1) NARXNN (Nonlinear Auto-Regressive Neural Networks with exogenous input) model generates SSL power consumption and (2) BiLSTM (Bidirectional Long short-term memory) model generates SSL power forecasts. The quantile regression with the NARX-BiLSTM (Nonlinear Auto-Regressive Neural Networks with exogenous input-Bidirectional Long short-term memory) model forecasts the seasonal patterns achieving non-parametric interval predictions. The probabilistic predictions of power consumption are determined based on the conditional quantile using an improved kernel density estimation approach. The fuzzy inference system adopts forecasting results to diagnose fault conditions in street lamps. The experiment results show that the proposed framework SSLFI outperformed the state-of-the-art models forecasting under different weather conditions.</p>","PeriodicalId":10718,"journal":{"name":"Computing","volume":"7 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00607-024-01348-0","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Street lamp is a great asset for human society with a narrow beam spread light. The extensive proliferation of solar power in street lamps causes power outages due to their variable power-generated profiles. Thus Smart Street Lamp Fog Intelligence (SSLFI) framework based on hierarchical learning was proposed for efficient energy management in solar street lamps. Smart Street Lamp (SSL) shifts its brightness at higher and lower light levels with a comforting, energy-efficient gleam of light. The fog intelligence framework forecasts the SSL output power through short-term probabilistic energy consumption forecasts using Q-NARX-BiLSTM (Quantile Regression-Nonlinear Auto-Regressive Neural Networks with exogenous input-Bidirectional Long short-term memory) model. NARX-BiLSTM of two module types: (1) NARXNN (Nonlinear Auto-Regressive Neural Networks with exogenous input) model generates SSL power consumption and (2) BiLSTM (Bidirectional Long short-term memory) model generates SSL power forecasts. The quantile regression with the NARX-BiLSTM (Nonlinear Auto-Regressive Neural Networks with exogenous input-Bidirectional Long short-term memory) model forecasts the seasonal patterns achieving non-parametric interval predictions. The probabilistic predictions of power consumption are determined based on the conditional quantile using an improved kernel density estimation approach. The fuzzy inference system adopts forecasting results to diagnose fault conditions in street lamps. The experiment results show that the proposed framework SSLFI outperformed the state-of-the-art models forecasting under different weather conditions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于智能路灯节能管理的雾智能
路灯是人类社会的一大财富,它的光束传播范围很窄。由于太阳能路灯的发电曲线不稳定,太阳能路灯的广泛普及会导致停电。因此,我们提出了基于分层学习的智能路灯雾智能(SSLFI)框架,用于太阳能路灯的高效能源管理。智能路灯(SSL)会在较高和较低的光照水平下变换亮度,发出舒适、节能的微光。雾智能框架利用 Q-NARX-BiLSTM(具有外生输入的定量回归-非线性自回归神经网络-双向长短期记忆)模型,通过短期能耗概率预测来预测智能路灯的输出功率。NARX-BiLSTM 有两种模块类型:(1)NARXNN(具有外生输入的非线性自回归神经网络)模型生成 SSL 功率消耗;(2)BiLSTM(双向长短期记忆)模型生成 SSL 功率预测。采用 NARX-BiLSTM(带外源输入的非线性自回归神经网络-双向长短期记忆)模型的量回归预测季节性模式,实现了非参数区间预测。用改进的核密度估计方法,根据条件量值确定耗电量的概率预测。模糊推理系统采用预测结果来诊断路灯的故障情况。实验结果表明,所提出的 SSLFI 框架在不同天气条件下的预测结果优于最先进的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computing
Computing 工程技术-计算机:理论方法
CiteScore
8.20
自引率
2.70%
发文量
107
审稿时长
3 months
期刊介绍: Computing publishes original papers, short communications and surveys on all fields of computing. The contributions should be written in English and may be of theoretical or applied nature, the essential criteria are computational relevance and systematic foundation of results.
期刊最新文献
Mapping and just-in-time traffic congestion mitigation for emergency vehicles in smart cities Fog intelligence for energy efficient management in smart street lamps Contextual authentication of users and devices using machine learning Multi-objective service composition optimization problem in IoT for agriculture 4.0 Robust evaluation of GPU compute instances for HPC and AI in the cloud: a TOPSIS approach with sensitivity, bootstrapping, and non-parametric analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1