{"title":"Contextual authentication of users and devices using machine learning","authors":"Divyans Mahansaria, Uttam Kumar Roy","doi":"10.1007/s00607-024-01333-7","DOIUrl":null,"url":null,"abstract":"<p>At the time of authentication, confidential data are exchanged between the user/device and the authentication server to determine the legitimacy of the source requesting authentication. Safeguarding the authentication process from security attacks is of utmost importance, and various authentication methods exist depending on the system’s requirements. However, no authentication process can guarantee full-proof security. This research aimed to use the context of users and devices during authentication to detect anomalies and security-related attacks. In particular, denial-of-service (DoS)/distributed denial-of-service (DDoS) attacks and brute-force attacks have been analyzed in detail using contextual information. Extensive simulations were conducted on the benchmark CIC-IDS2017 dataset using the Weka tool. The performance metrics of recall, precision, accuracy, f-score, and model-built time were computed for the four machine-learning classifiers—J48, Random Forest, Multi-Layer Perceptron, and Bayes Net—for different combinations of data splits and groups of data features. For both DoS/DDoS and brute-force attacks, some of the experimental results show a more than 99% value for recall, precision, accuracy, and f-score. The results of the experiments, security analysis, and threat modeling show that the proposed authentication scheme effectively enhances a secure system’s security level.</p>","PeriodicalId":10718,"journal":{"name":"Computing","volume":"183 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00607-024-01333-7","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
At the time of authentication, confidential data are exchanged between the user/device and the authentication server to determine the legitimacy of the source requesting authentication. Safeguarding the authentication process from security attacks is of utmost importance, and various authentication methods exist depending on the system’s requirements. However, no authentication process can guarantee full-proof security. This research aimed to use the context of users and devices during authentication to detect anomalies and security-related attacks. In particular, denial-of-service (DoS)/distributed denial-of-service (DDoS) attacks and brute-force attacks have been analyzed in detail using contextual information. Extensive simulations were conducted on the benchmark CIC-IDS2017 dataset using the Weka tool. The performance metrics of recall, precision, accuracy, f-score, and model-built time were computed for the four machine-learning classifiers—J48, Random Forest, Multi-Layer Perceptron, and Bayes Net—for different combinations of data splits and groups of data features. For both DoS/DDoS and brute-force attacks, some of the experimental results show a more than 99% value for recall, precision, accuracy, and f-score. The results of the experiments, security analysis, and threat modeling show that the proposed authentication scheme effectively enhances a secure system’s security level.
期刊介绍:
Computing publishes original papers, short communications and surveys on all fields of computing. The contributions should be written in English and may be of theoretical or applied nature, the essential criteria are computational relevance and systematic foundation of results.