Rahul Mishra;Hari Prabhat Gupta;Garvit Banga;Sajal K. Das
{"title":"Fed-RAC: Resource-Aware Clustering for Tackling Heterogeneity of Participants in Federated Learning","authors":"Rahul Mishra;Hari Prabhat Gupta;Garvit Banga;Sajal K. Das","doi":"10.1109/TPDS.2024.3379933","DOIUrl":null,"url":null,"abstract":"Federated Learning is a training framework that enables multiple participants to collaboratively train a shared model while preserving data privacy. The heterogeneity of devices and networking resources of the participants delay the training and aggregation. The paper introduces a novel approach to federated learning by incorporating resource-aware clustering. This method addresses the challenges posed by the diverse devices and networking resources among participants. Unlike static clustering approaches, this paper proposes a dynamic method to determine the optimal number of clusters using Dunn Indices. It enables adaptability to the varying heterogeneity levels among participants, ensuring a responsive and customized approach to clustering. Next, the paper goes beyond empirical observations by providing a mathematical derivation of the communication rounds for convergence within each cluster. Further, the participant assignment mechanism adds a layer of sophistication and ensures that devices and networking resources are allocated optimally. Afterwards, we incorporate a leader-follower technique, particularly through knowledge distillation, which improves the performance of lightweight models within clusters. Finally, experiments are conducted to validate the approach and to compare it with state-of-the-art. The results demonstrated an accuracy improvement of over 3% compared to its closest competitor and a reduction in communication rounds of around 10%.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10476717/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Federated Learning is a training framework that enables multiple participants to collaboratively train a shared model while preserving data privacy. The heterogeneity of devices and networking resources of the participants delay the training and aggregation. The paper introduces a novel approach to federated learning by incorporating resource-aware clustering. This method addresses the challenges posed by the diverse devices and networking resources among participants. Unlike static clustering approaches, this paper proposes a dynamic method to determine the optimal number of clusters using Dunn Indices. It enables adaptability to the varying heterogeneity levels among participants, ensuring a responsive and customized approach to clustering. Next, the paper goes beyond empirical observations by providing a mathematical derivation of the communication rounds for convergence within each cluster. Further, the participant assignment mechanism adds a layer of sophistication and ensures that devices and networking resources are allocated optimally. Afterwards, we incorporate a leader-follower technique, particularly through knowledge distillation, which improves the performance of lightweight models within clusters. Finally, experiments are conducted to validate the approach and to compare it with state-of-the-art. The results demonstrated an accuracy improvement of over 3% compared to its closest competitor and a reduction in communication rounds of around 10%.
期刊介绍:
IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to:
a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing.
b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems.
c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation.
d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.