R. N. M. Delda, R. L. B. del Rosario, B. Tuazon, G. S. Robles, M. V. Villablanca, M. T. Espino, J. R. Dizon
{"title":"Effects of Gamma Irradiation on the Tensile Properties of 3D-Printed Polycarbonate Acrylonitrile Butadiene Styrene","authors":"R. N. M. Delda, R. L. B. del Rosario, B. Tuazon, G. S. Robles, M. V. Villablanca, M. T. Espino, J. R. Dizon","doi":"10.4028/p-6xqmkv","DOIUrl":null,"url":null,"abstract":"3D printing is now being applied in various research areas due to its ability to produce highly complex parts whenever needed. This is highly helpful in the fields of robotics; radiation environment monitoring and space applications where stand-alone equipment are usually required. In this work, FDM 3D-printed polycarbonate acrylonitrile butadiene styrene (PCABS) samples were subjected to 1 kGy to 9 kGy of gamma irradiation from a Cobalt-60 irradiator. Parameters such as infill density and dose rate were modified to determine the best setting to improve the mechanical characteristics of the 3D-printed thermoplastic. Results show that samples with lower infill density obtain higher ultimate strength when exposed to higher doses of radiation.","PeriodicalId":18262,"journal":{"name":"Materials Science Forum","volume":" 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-6xqmkv","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
3D printing is now being applied in various research areas due to its ability to produce highly complex parts whenever needed. This is highly helpful in the fields of robotics; radiation environment monitoring and space applications where stand-alone equipment are usually required. In this work, FDM 3D-printed polycarbonate acrylonitrile butadiene styrene (PCABS) samples were subjected to 1 kGy to 9 kGy of gamma irradiation from a Cobalt-60 irradiator. Parameters such as infill density and dose rate were modified to determine the best setting to improve the mechanical characteristics of the 3D-printed thermoplastic. Results show that samples with lower infill density obtain higher ultimate strength when exposed to higher doses of radiation.