New Approach to SCADA System Screen Configuration Based on the Model of Oil and Gas Pipeline Network

He Huang, Yafeng Li, Liang Ma, Bingqiang Mao, Lin Zhang, Jingli Yang, Haishan Wang, Yanguo Sun, Xiaochuan Zhao, Muhao Lv
{"title":"New Approach to SCADA System Screen Configuration Based on the Model of Oil and Gas Pipeline Network","authors":"He Huang, Yafeng Li, Liang Ma, Bingqiang Mao, Lin Zhang, Jingli Yang, Haishan Wang, Yanguo Sun, Xiaochuan Zhao, Muhao Lv","doi":"10.4108/ew.5247","DOIUrl":null,"url":null,"abstract":"INTRODUCTION: With the continuous progress of science and technology, the monitoring and control of oil and gas pipeline networks have become more and more critical; SCADA systems, as a kind of technology widely used in industrial control, play a key role. The screen configuration of the SCADA system is the core part of its user interface, which is directly related to the operator's mastery of the status of the pipeline network. In order to improve the monitoring efficiency and reduce the operation risk, this study is devoted to exploring a new method of SCADA system screen configuration based on the oil and gas pipeline network model.PURPOSE: The purpose of this study is to develop an innovative SCADA system screen configuration method to present the operating status of the oil and gas pipeline network more intuitively and efficiently. The design based on the pipeline network model aims to enhance the operators' understanding of essential information, such as pipeline network topology, fluid flow, etc., so as to make monitoring and control more intelligent.METHODS: The study adopts a new method of SCADA system screen configuration based on the oil and gas pipeline network model. First, the topology, sensor data, and control nodes of the oil and gas pipeline network are comprehensively modelled. Then, through the design principle of human-computer interaction, the modelling results are integrated into the screen configuration of the SCADA system to realize the intuitive presentation of information. At the same time, advanced visualization technology is introduced so that the operators can understand the real-time changes in the pipe network status more clearly.RESULTS: After experimental verification, the new method shows significant advantages in oil and gas pipeline network monitoring. The operators can recognize the abnormalities of the pipeline network more quickly and accurately through the SCADA system screen configuration, which improves the efficiency of troubleshooting and treatment. The visualized interface design makes the operation more intuitive and reduces the possibility of operating errors, thus improving the safety and reliability of the pipeline network.CONCLUSION: The new method of SCADA system screen configuration based on the oil and gas pipeline network model has achieved significant results in improving monitoring efficiency and reducing operational risks. Through a more intuitive and intelligent interface design, operators can have a more comprehensive understanding of the operating status of the pipeline network, which provides practical support for rapid response and decision-making. This approach introduces new ideas to the field of oil and gas pipeline network monitoring, which is of positive significance for improving the overall performance of the system. Future work can be carried out to optimize the interface design further and expand the applicable scenarios.","PeriodicalId":502230,"journal":{"name":"EAI Endorsed Transactions on Energy Web","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Energy Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/ew.5247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

INTRODUCTION: With the continuous progress of science and technology, the monitoring and control of oil and gas pipeline networks have become more and more critical; SCADA systems, as a kind of technology widely used in industrial control, play a key role. The screen configuration of the SCADA system is the core part of its user interface, which is directly related to the operator's mastery of the status of the pipeline network. In order to improve the monitoring efficiency and reduce the operation risk, this study is devoted to exploring a new method of SCADA system screen configuration based on the oil and gas pipeline network model.PURPOSE: The purpose of this study is to develop an innovative SCADA system screen configuration method to present the operating status of the oil and gas pipeline network more intuitively and efficiently. The design based on the pipeline network model aims to enhance the operators' understanding of essential information, such as pipeline network topology, fluid flow, etc., so as to make monitoring and control more intelligent.METHODS: The study adopts a new method of SCADA system screen configuration based on the oil and gas pipeline network model. First, the topology, sensor data, and control nodes of the oil and gas pipeline network are comprehensively modelled. Then, through the design principle of human-computer interaction, the modelling results are integrated into the screen configuration of the SCADA system to realize the intuitive presentation of information. At the same time, advanced visualization technology is introduced so that the operators can understand the real-time changes in the pipe network status more clearly.RESULTS: After experimental verification, the new method shows significant advantages in oil and gas pipeline network monitoring. The operators can recognize the abnormalities of the pipeline network more quickly and accurately through the SCADA system screen configuration, which improves the efficiency of troubleshooting and treatment. The visualized interface design makes the operation more intuitive and reduces the possibility of operating errors, thus improving the safety and reliability of the pipeline network.CONCLUSION: The new method of SCADA system screen configuration based on the oil and gas pipeline network model has achieved significant results in improving monitoring efficiency and reducing operational risks. Through a more intuitive and intelligent interface design, operators can have a more comprehensive understanding of the operating status of the pipeline network, which provides practical support for rapid response and decision-making. This approach introduces new ideas to the field of oil and gas pipeline network monitoring, which is of positive significance for improving the overall performance of the system. Future work can be carried out to optimize the interface design further and expand the applicable scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于油气管网模型的 SCADA 系统屏幕配置新方法
引言: 随着科学技术的不断进步,油气管网的监测与控制变得越来越关键,SCADA 系统作为一种广泛应用于工业控制的技术,发挥着关键作用。SCADA 系统的屏幕配置是其用户界面的核心部分,直接关系到操作人员对管网状态的掌握。为了提高监控效率,降低操作风险,本研究致力于探索一种基于油气管网模型的 SCADA 系统屏幕配置新方法。目的:本研究旨在开发一种创新的 SCADA 系统屏幕配置方法,以更直观、更高效地呈现油气管网的运行状态。方法:本研究采用了一种基于油气管网模型的 SCADA 系统屏幕配置新方法。首先,对油气管网的拓扑结构、传感器数据和控制节点进行全面建模。然后,通过人机交互的设计原理,将建模结果融入 SCADA 系统的屏幕配置中,实现信息的直观呈现。结果:经过实验验证,新方法在油气管网监控方面具有显著优势。操作人员可以通过 SCADA 系统的屏幕配置更快、更准确地识别管网的异常情况,提高了故障排除和处理的效率。可视化的界面设计使操作更加直观,减少了操作失误的可能性,从而提高了管网的安全性和可靠性。结论:基于油气管网模型的 SCADA 系统画面组态新方法在提高监控效率、降低操作风险方面取得了显著效果。通过更加直观、智能的界面设计,操作人员可以更加全面地了解管网的运行状况,为快速反应和决策提供了切实的支持。这种方法为油气管网监测领域引入了新思路,对提高系统的整体性能具有积极意义。今后的工作可以进一步优化界面设计,拓展适用场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Active fault-tolerant control and performance simulation of electric vehicle suspension based on improved algorithms Energy Aware On-Demand Routing Protocol Scheme of DSR Protocol (EAORP) Revolutionizing Cloud Resource Allocation: Harnessing Layer-Optimized Long Short-Term Memory for Energy-Efficient Predictive Resource Management Optimized Energy Efficient- Hierarchical Clustering Based Routing (OEE-HCR) For Wireless Sensor Network (WSN) Switched capacitor voltage boost converter for BLDC motor speed control of electric vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1