4.87 kV SiC MOSFET Using HfSiOx/SiO2 Gate Dielectrics Combined with PN Pillars

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Electronic Materials Pub Date : 2024-03-18 DOI:10.1007/s11664-024-11014-y
A. S. Augustine Fletcher, S. Angen Franklin, P. Murugapandiyan, J. Ajayan, D. Nirmal
{"title":"4.87 kV SiC MOSFET Using HfSiOx/SiO2 Gate Dielectrics Combined with PN Pillars","authors":"A. S. Augustine Fletcher,&nbsp;S. Angen Franklin,&nbsp;P. Murugapandiyan,&nbsp;J. Ajayan,&nbsp;D. Nirmal","doi":"10.1007/s11664-024-11014-y","DOIUrl":null,"url":null,"abstract":"<div><p>A novel structure of a silicon carbide (SiC) double-trench metal oxide semiconductor field-effect transistor (DTMOSFET) is proposed using a hafnium silicate (HfSiO<sub><i>x</i></sub> ) dielectric combined with PN pillars. Moreover, it has been characterized using Atlas TCAD Silvaco 2D simulations, and offers a very high breakdown voltage of 4879 V, which is due to the PN pillars under the N-drift layer altering the electric field distribution and HfSiO<sub><i>x</i></sub> dielectric that diminishes the impact ionization. The proposed DTMOSFET achieves a transconductance (<i>g</i><sub>m</sub>) and drain current (<i>I</i><sub>D</sub>) of 7 mA/mm and 780 <i>µ</i>S/mm, respectively. In addition, the simulated results show the cut-off frequency, <i>f</i><sub>T</sub> <sub>=</sub> 1.28 GHz, and maximum frequency, <i>f</i><sub>max</sub> = 10.5 GHz. In addition, the peak electric field observed near the gate edge is 0.93 MV/cm. Moreover, the proposed DTPNH-MOSFET shows 11% improvement in breakdown voltage when compared to the breakdown voltage of conventional DTMOSFET. Therefore, the DTPNH-MOSFET shows a superior performance over other SiC MOSFETs and is a suitable device for future high-power electronics.</p></div>","PeriodicalId":626,"journal":{"name":"Journal of Electronic Materials","volume":"53 5","pages":"2601 - 2608"},"PeriodicalIF":2.2000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11664-024-11014-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A novel structure of a silicon carbide (SiC) double-trench metal oxide semiconductor field-effect transistor (DTMOSFET) is proposed using a hafnium silicate (HfSiOx ) dielectric combined with PN pillars. Moreover, it has been characterized using Atlas TCAD Silvaco 2D simulations, and offers a very high breakdown voltage of 4879 V, which is due to the PN pillars under the N-drift layer altering the electric field distribution and HfSiOx dielectric that diminishes the impact ionization. The proposed DTMOSFET achieves a transconductance (gm) and drain current (ID) of 7 mA/mm and 780 µS/mm, respectively. In addition, the simulated results show the cut-off frequency, fT = 1.28 GHz, and maximum frequency, fmax = 10.5 GHz. In addition, the peak electric field observed near the gate edge is 0.93 MV/cm. Moreover, the proposed DTPNH-MOSFET shows 11% improvement in breakdown voltage when compared to the breakdown voltage of conventional DTMOSFET. Therefore, the DTPNH-MOSFET shows a superior performance over other SiC MOSFETs and is a suitable device for future high-power electronics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用 HfSiOx/SiO2 栅极电介质和 PN 柱的 4.87 kV SiC MOSFET
我们提出了一种新型碳化硅(SiC)双沟槽金属氧化物半导体场效应晶体管(DTMOSFET)结构,它使用硅酸铪(HfSiOx)电介质与 PN 柱相结合。此外,还利用 Atlas TCAD Silvaco 2D 仿真对其进行了表征,结果表明它具有 4879 V 的超高击穿电压,这是由于 N-漂移层下的 PN 柱改变了电场分布,而 HfSiOx 电介质则减少了冲击电离。所提出的 DTMOSFET 的跨导(gm)和漏极电流(ID)分别达到了 7 mA/mm 和 780 µS/mm。此外,模拟结果还显示了截止频率 fT = 1.28 GHz 和最大频率 fmax = 10.5 GHz。此外,在栅极边缘附近观测到的峰值电场为 0.93 MV/cm。此外,与传统 DTMOSFET 的击穿电压相比,拟议的 DTPNH-MOSFET 的击穿电压提高了 11%。因此,DTPNH-MOSFET 的性能优于其他 SiC MOSFET,是未来大功率电子器件的理想选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Electronic Materials
Journal of Electronic Materials 工程技术-材料科学:综合
CiteScore
4.10
自引率
4.80%
发文量
693
审稿时长
3.8 months
期刊介绍: The Journal of Electronic Materials (JEM) reports monthly on the science and technology of electronic materials, while examining new applications for semiconductors, magnetic alloys, dielectrics, nanoscale materials, and photonic materials. The journal welcomes articles on methods for preparing and evaluating the chemical, physical, electronic, and optical properties of these materials. Specific areas of interest are materials for state-of-the-art transistors, nanotechnology, electronic packaging, detectors, emitters, metallization, superconductivity, and energy applications. Review papers on current topics enable individuals in the field of electronics to keep abreast of activities in areas peripheral to their own. JEM also selects papers from conferences such as the Electronic Materials Conference, the U.S. Workshop on the Physics and Chemistry of II-VI Materials, and the International Conference on Thermoelectrics. It benefits both specialists and non-specialists in the electronic materials field. A journal of The Minerals, Metals & Materials Society.
期刊最新文献
Factors Influencing Standard PID Test and Anti-PID Performance of Ga-Doped PERC Mono-Facial Photovoltaic Modules Enhanced Microwave Magnetic and Dielectric Properties of YBiIG Ferrite by Ca-Zr Co-substitution Structural, Optical, and Magnetic Studies of Nickel-Doped β-Ga2O3 Monoclinic and Spinel Polycrystalline Powders Effect of Epoxy Material Viscosity and Gold Wire Configuration on Light-Emitting Diode Encapsulation Process Synthesis and Characterization of Sn-Doped CuO Thin Films for Gas Sensor Toward H2S Gas Sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1