{"title":"Spaceborne and ground-based sensor collaboration: Advancing resident space objects’ orbit determination for space sustainability","authors":"Niki Sajjad, Mehran Mirshams, Andreas Makoto Hein","doi":"10.1007/s42064-023-0193-1","DOIUrl":null,"url":null,"abstract":"<div><p>The limited space around the Earth is getting cluttered with leftover fragments from old missions, creating a real challenge. As more satellites are launched, even debris pieces as small as 5 mm must be tracked to avoid collisions. However, it is an arduous and challenging task in space. This paper presents a technical exploration of ground-based and in-orbit space debris tracking and orbit determination methods. It highlights the challenges faced during on-ground and in-orbit demonstrations, identifies current gaps, and proposes solutions following technological advancements, such as low-power pose estimation methods. Owing to the numerous atmospheric barriers to ground-based sensors, this study emphasizes the significance of spaceborne sensors for precise orbit determination, complemented by advanced data processing algorithms and collaborative efforts. The ultimate goal is to create a comprehensive catalog of resident space objects (RSO) around the Earth and promote space environment sustainability. By exploring different methods and finding innovative solutions, this study contributes to the protection of space for future exploration and the creation of a more transparent and precise map of orbital objects.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrodynamics","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42064-023-0193-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The limited space around the Earth is getting cluttered with leftover fragments from old missions, creating a real challenge. As more satellites are launched, even debris pieces as small as 5 mm must be tracked to avoid collisions. However, it is an arduous and challenging task in space. This paper presents a technical exploration of ground-based and in-orbit space debris tracking and orbit determination methods. It highlights the challenges faced during on-ground and in-orbit demonstrations, identifies current gaps, and proposes solutions following technological advancements, such as low-power pose estimation methods. Owing to the numerous atmospheric barriers to ground-based sensors, this study emphasizes the significance of spaceborne sensors for precise orbit determination, complemented by advanced data processing algorithms and collaborative efforts. The ultimate goal is to create a comprehensive catalog of resident space objects (RSO) around the Earth and promote space environment sustainability. By exploring different methods and finding innovative solutions, this study contributes to the protection of space for future exploration and the creation of a more transparent and precise map of orbital objects.
期刊介绍:
Astrodynamics is a peer-reviewed international journal that is co-published by Tsinghua University Press and Springer. The high-quality peer-reviewed articles of original research, comprehensive review, mission accomplishments, and technical comments in all fields of astrodynamics will be given priorities for publication. In addition, related research in astronomy and astrophysics that takes advantages of the analytical and computational methods of astrodynamics is also welcome. Astrodynamics would like to invite all of the astrodynamics specialists to submit their research articles to this new journal. Currently, the scope of the journal includes, but is not limited to:Fundamental orbital dynamicsSpacecraft trajectory optimization and space mission designOrbit determination and prediction, autonomous orbital navigationSpacecraft attitude determination, control, and dynamicsGuidance and control of spacecraft and space robotsSpacecraft constellation design and formation flyingModelling, analysis, and optimization of innovative space systemsNovel concepts for space engineering and interdisciplinary applicationsThe effort of the Editorial Board will be ensuring the journal to publish novel researches that advance the field, and will provide authors with a productive, fair, and timely review experience. It is our sincere hope that all researchers in the field of astrodynamics will eagerly access this journal, Astrodynamics, as either authors or readers, making it an illustrious journal that will shape our future space explorations and discoveries.