{"title":"Sustainable Asteroid Mining: Results and methods of team BIT-CAS-DFH for GTOC12","authors":"Bo Pang, Yangyuxi Sun, Guoxu Zhang, Yining Zhang, Tianhao Zhu, Yangxin Wang, Zihan Jin, Zhaohang Li, Lvzheng He, Meng Lu, Rui Zhou, Yongchen Yin, Yunong Shang, Shengmao He, Chao Peng, Zhengfan Zhu, Yang Zhang, Yang Gao, Changxuan Wen","doi":"10.1007/s42064-024-0241-5","DOIUrl":null,"url":null,"abstract":"<div><p>The 12th Global Trajectory Optimization Competition challenged teams to design trajectories for mining asteroids and transporting extracted resources back to the Earth. This paper outlines the methods and results of the runner-up team, BIT-CAS-DFH, highlighting an overall analysis of the approach as well as detailed descriptions of the methods used. The approach begins with building databases to reduce computational costs in trajectory design. Then, asteroid sequences are determined. A segmentation-based approach was adopted to efficiently handle the large dataset. Each sequence was divided into four time-based segments. Segments 1 and 4 were generated forward and backward, respectively, using a breadth-first beam search. Candidates for these segments were refined using genetic and greedy algorithms. Segments 2 and 3 were then generated and selected forward and backward based on the results of Segments 1 and 4. Following this, a matching process paired candidates from Segments 2 and 3. With the asteroid sequences established, low-thrust trajectories were optimized using indirect methods. A local optimization strategy was employed to maximize the collected mass by fine-tuning rendezvous timings. The final solution is presented, with comparative analyses against other teams’ approaches.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":"9 1","pages":"107 - 128"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrodynamics","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42064-024-0241-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The 12th Global Trajectory Optimization Competition challenged teams to design trajectories for mining asteroids and transporting extracted resources back to the Earth. This paper outlines the methods and results of the runner-up team, BIT-CAS-DFH, highlighting an overall analysis of the approach as well as detailed descriptions of the methods used. The approach begins with building databases to reduce computational costs in trajectory design. Then, asteroid sequences are determined. A segmentation-based approach was adopted to efficiently handle the large dataset. Each sequence was divided into four time-based segments. Segments 1 and 4 were generated forward and backward, respectively, using a breadth-first beam search. Candidates for these segments were refined using genetic and greedy algorithms. Segments 2 and 3 were then generated and selected forward and backward based on the results of Segments 1 and 4. Following this, a matching process paired candidates from Segments 2 and 3. With the asteroid sequences established, low-thrust trajectories were optimized using indirect methods. A local optimization strategy was employed to maximize the collected mass by fine-tuning rendezvous timings. The final solution is presented, with comparative analyses against other teams’ approaches.
期刊介绍:
Astrodynamics is a peer-reviewed international journal that is co-published by Tsinghua University Press and Springer. The high-quality peer-reviewed articles of original research, comprehensive review, mission accomplishments, and technical comments in all fields of astrodynamics will be given priorities for publication. In addition, related research in astronomy and astrophysics that takes advantages of the analytical and computational methods of astrodynamics is also welcome. Astrodynamics would like to invite all of the astrodynamics specialists to submit their research articles to this new journal. Currently, the scope of the journal includes, but is not limited to:Fundamental orbital dynamicsSpacecraft trajectory optimization and space mission designOrbit determination and prediction, autonomous orbital navigationSpacecraft attitude determination, control, and dynamicsGuidance and control of spacecraft and space robotsSpacecraft constellation design and formation flyingModelling, analysis, and optimization of innovative space systemsNovel concepts for space engineering and interdisciplinary applicationsThe effort of the Editorial Board will be ensuring the journal to publish novel researches that advance the field, and will provide authors with a productive, fair, and timely review experience. It is our sincere hope that all researchers in the field of astrodynamics will eagerly access this journal, Astrodynamics, as either authors or readers, making it an illustrious journal that will shape our future space explorations and discoveries.