Sébastien Goulet, Vincent Debout, Patrice Mathieu, Vincent Cucchietti, Maxime Journot, Julien Asquier, Romain Garmier, Laurène Beauvalet, Thierry Ceolin, Laurent Chausson, Pascal Parraud
{"title":"GTOC12: Results from the OptimiCS team","authors":"Sébastien Goulet, Vincent Debout, Patrice Mathieu, Vincent Cucchietti, Maxime Journot, Julien Asquier, Romain Garmier, Laurène Beauvalet, Thierry Ceolin, Laurent Chausson, Pascal Parraud","doi":"10.1007/s42064-024-0223-7","DOIUrl":null,"url":null,"abstract":"<div><p>Establishing a sustainable mining expedition for the asteroids of the main belt over the 2035–2050 horizon is the visionary problem of the 12th Global Trajectory Optimisation Competition. A fleet of mining ships must rendezvous twice with asteroids to deploy miners and collect minerals. In this paper, we describe the approach of the CS Group team, OptimiCS, to solve this challenging problem. We present the symmetrical construction of upstream and downstream semi-sequences of asteroids, maximizing the mining time expectancy via a beam search with tabu iterations, and the composition of these semi-sequences into complete fleet routes, maximizing the total collected mass via simulated annealing. While representative Earth–asteroid legs are precomputed, the delta-<i>V</i> costs of the asteroid-to-asteroid hops composing the sequences are initially approximated during exploration via a method that refines the accuracy of the maximum initial mass. The resulting high-fidelity trajectories are adjusted and optimized via a direct method and nonlinear programming.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":"9 1","pages":"77 - 88"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrodynamics","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42064-024-0223-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Establishing a sustainable mining expedition for the asteroids of the main belt over the 2035–2050 horizon is the visionary problem of the 12th Global Trajectory Optimisation Competition. A fleet of mining ships must rendezvous twice with asteroids to deploy miners and collect minerals. In this paper, we describe the approach of the CS Group team, OptimiCS, to solve this challenging problem. We present the symmetrical construction of upstream and downstream semi-sequences of asteroids, maximizing the mining time expectancy via a beam search with tabu iterations, and the composition of these semi-sequences into complete fleet routes, maximizing the total collected mass via simulated annealing. While representative Earth–asteroid legs are precomputed, the delta-V costs of the asteroid-to-asteroid hops composing the sequences are initially approximated during exploration via a method that refines the accuracy of the maximum initial mass. The resulting high-fidelity trajectories are adjusted and optimized via a direct method and nonlinear programming.
期刊介绍:
Astrodynamics is a peer-reviewed international journal that is co-published by Tsinghua University Press and Springer. The high-quality peer-reviewed articles of original research, comprehensive review, mission accomplishments, and technical comments in all fields of astrodynamics will be given priorities for publication. In addition, related research in astronomy and astrophysics that takes advantages of the analytical and computational methods of astrodynamics is also welcome. Astrodynamics would like to invite all of the astrodynamics specialists to submit their research articles to this new journal. Currently, the scope of the journal includes, but is not limited to:Fundamental orbital dynamicsSpacecraft trajectory optimization and space mission designOrbit determination and prediction, autonomous orbital navigationSpacecraft attitude determination, control, and dynamicsGuidance and control of spacecraft and space robotsSpacecraft constellation design and formation flyingModelling, analysis, and optimization of innovative space systemsNovel concepts for space engineering and interdisciplinary applicationsThe effort of the Editorial Board will be ensuring the journal to publish novel researches that advance the field, and will provide authors with a productive, fair, and timely review experience. It is our sincere hope that all researchers in the field of astrodynamics will eagerly access this journal, Astrodynamics, as either authors or readers, making it an illustrious journal that will shape our future space explorations and discoveries.