Process Optimization of Spark Plasma Sintered Parameters for Ti-Al-Cr-Nb-Ni-Cu-Co High Entropy Alloy by Response Surface Methodology

U. Anamu, E. Olorundaisi, O. Ayodele, B. Babalola, P.I. Odetola, A. Ogunmefun, K. Ukoba, T.-C. Jen, P. Olubambi
{"title":"Process Optimization of Spark Plasma Sintered Parameters for Ti-Al-Cr-Nb-Ni-Cu-Co High Entropy Alloy by Response Surface Methodology","authors":"U. Anamu, E. Olorundaisi, O. Ayodele, B. Babalola, P.I. Odetola, A. Ogunmefun, K. Ukoba, T.-C. Jen, P. Olubambi","doi":"10.4028/p-0bsg8t","DOIUrl":null,"url":null,"abstract":"In this study, the influence of operating parameters on the relative density and microhardness property of a septenary equiatomic Ti-Al-Cr-Nb-Ni-Cu-Co high entropy alloy developed via spark plasma sintering (SPS) process was investigated at constant heating rate (100 °C/min), dwell time (5 min), pressure (50 MPa). Using response surface methodology (RSM) on the sintering temperature (ST) and milling time (MT) as the process variable parameters, a predictive model was established. The design of experiment approach was employed to minimize numbers of runs of experiment, which invariably eliminates trial by error associated with traditional experimental methods. MT and ST were taken as the variables towards the development of the design model. The optimum operating parameters were predicted using the user-defined design (UDD) under RSM and the result was validated through experiments. Observation from the results shows that MT and ST play a significant role in achieving high densification, which translates to high hardness. At 900 °C ST and MT of 10 hours, the highest hardness value of 580.1 HV, densification of 99.98%, and percentage porosity of 0.02% were recorded.","PeriodicalId":18262,"journal":{"name":"Materials Science Forum","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-0bsg8t","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the influence of operating parameters on the relative density and microhardness property of a septenary equiatomic Ti-Al-Cr-Nb-Ni-Cu-Co high entropy alloy developed via spark plasma sintering (SPS) process was investigated at constant heating rate (100 °C/min), dwell time (5 min), pressure (50 MPa). Using response surface methodology (RSM) on the sintering temperature (ST) and milling time (MT) as the process variable parameters, a predictive model was established. The design of experiment approach was employed to minimize numbers of runs of experiment, which invariably eliminates trial by error associated with traditional experimental methods. MT and ST were taken as the variables towards the development of the design model. The optimum operating parameters were predicted using the user-defined design (UDD) under RSM and the result was validated through experiments. Observation from the results shows that MT and ST play a significant role in achieving high densification, which translates to high hardness. At 900 °C ST and MT of 10 hours, the highest hardness value of 580.1 HV, densification of 99.98%, and percentage porosity of 0.02% were recorded.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
响应面法优化 Ti-Al-Cr-Nb-Ni-Cu-Co 高熵合金的火花等离子烧结参数工艺
本研究在恒定的加热速率(100 °C/min)、停留时间(5 分钟)和压力(50 兆帕)条件下,研究了操作参数对通过火花等离子烧结(SPS)工艺开发的隔元等原子钛-铝-铬-铌-镍-铜-钴高熵合金的相对密度和显微硬度特性的影响。采用响应面方法(RSM)对烧结温度(ST)和铣削时间(MT)作为工艺变量参数建立了预测模型。采用了实验设计方法,以尽量减少实验次数,从而避免了传统实验方法中的误差试验。在设计模型的开发过程中,将 MT 和 ST 作为变量。使用 RSM 下的用户自定义设计(UDD)预测了最佳运行参数,并通过实验对结果进行了验证。观察结果表明,MT 和 ST 在实现高致密化方面起着重要作用,而高致密化则意味着高硬度。在 ST 值为 900 °C 和 MT 值为 10 小时的条件下,记录到的最高硬度值为 580.1 HV,致密化率为 99.98%,孔隙率为 0.02%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊最新文献
The Effect of Friction Stir Weld (FSW) Process Parameters on Tensile Strength, Macro Structure, and Hardness in Results of AA7075 Butt Joints Study of the Physic-Mechanical Properties of a Typha Concrete Composites: A Possible New Material for Sustainable Construction Incorporating Graphene Nanofiller for the Improvement of Hydrophobic Properties of Cassava Peel Starch Bioplastic Microstructure and Mechanical Characteristics of Friction Welded Joint between Alumina and Aluminum Casting Alloy Effect of Silanized Zirconium Oxide (ZrO2) Filler on Hardness of Acrylic-Based Denture Teeth
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1