{"title":"Comparative analysis of the rapid intensification of two super cyclonic storms in the Arabian Sea","authors":"Longsheng Liu , Yiwu Huang , Lian Liu","doi":"10.1016/j.tcrr.2024.03.001","DOIUrl":null,"url":null,"abstract":"<div><p>A comparative analysis of the rapid intensification (RI) of super cyclonic storms Chapala (2015) and Kyarr (2019) in the Arabian Sea is conducted using the North Indian Ocean tropical cyclone data, microwave sounding images, the NOAA OISST data and the ERA5 reanalysis data. Results show that the subtropical westerly jet stream and the Southern Hemisphere anticyclonic circulation led to the formation of an obvious double-channel outflow from the northern and southern sides of the two storm centers, and the substantial inflow appeared at the eastern boundary layer of both storms. These promoted the vertical ascent motion and release of the latent heat of condensation. A warm sea surface is a necessary but not dominant factor for the RI of cyclonic storms in the Arabian Sea. During the RI of Chapala and Kyarr, the deep vertical wind shear was less than 10 m s<sup>−1</sup>; moreover, the mid-level humidity conditions favored the RI of the two cyclonic storms. Chapala had a single warm core, whereas Kyarr had double warm cores in the vertical direction. The impacts of the latent heat of fusion is more obvious for Chapala, and the potential vorticity in its inner core increases from 4.4 PVU to 8.8 PVU, whereas the potential vorticity and vorticity in the inner core of Kyarr do not change significantly. Microwave detection images show that both Chapala and Kyarr were accompanied by the formation of eyewalls during the RI phase, and the radius of maximum wind decreased and the maximum wind speed increased during the eyewall-thinning process. Both Chapala and Kyarr passed through a positive anomaly region of maximum potential intensity during the RI phase, which increases the possibility to develop to higher intensity after genesis.</p></div>","PeriodicalId":44442,"journal":{"name":"Tropical Cyclone Research and Review","volume":"13 1","pages":"Pages 41-54"},"PeriodicalIF":2.4000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2225603224000134/pdfft?md5=9b969405cbb808bdf834c388f713833c&pid=1-s2.0-S2225603224000134-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical Cyclone Research and Review","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2225603224000134","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
A comparative analysis of the rapid intensification (RI) of super cyclonic storms Chapala (2015) and Kyarr (2019) in the Arabian Sea is conducted using the North Indian Ocean tropical cyclone data, microwave sounding images, the NOAA OISST data and the ERA5 reanalysis data. Results show that the subtropical westerly jet stream and the Southern Hemisphere anticyclonic circulation led to the formation of an obvious double-channel outflow from the northern and southern sides of the two storm centers, and the substantial inflow appeared at the eastern boundary layer of both storms. These promoted the vertical ascent motion and release of the latent heat of condensation. A warm sea surface is a necessary but not dominant factor for the RI of cyclonic storms in the Arabian Sea. During the RI of Chapala and Kyarr, the deep vertical wind shear was less than 10 m s−1; moreover, the mid-level humidity conditions favored the RI of the two cyclonic storms. Chapala had a single warm core, whereas Kyarr had double warm cores in the vertical direction. The impacts of the latent heat of fusion is more obvious for Chapala, and the potential vorticity in its inner core increases from 4.4 PVU to 8.8 PVU, whereas the potential vorticity and vorticity in the inner core of Kyarr do not change significantly. Microwave detection images show that both Chapala and Kyarr were accompanied by the formation of eyewalls during the RI phase, and the radius of maximum wind decreased and the maximum wind speed increased during the eyewall-thinning process. Both Chapala and Kyarr passed through a positive anomaly region of maximum potential intensity during the RI phase, which increases the possibility to develop to higher intensity after genesis.
期刊介绍:
Tropical Cyclone Research and Review is an international journal focusing on tropical cyclone monitoring, forecasting, and research as well as associated hydrological effects and disaster risk reduction. This journal is edited and published by the ESCAP/WMO Typhoon Committee (TC) and the Shanghai Typhoon Institute of the China Meteorology Administration (STI/CMA). Contributions from all tropical cyclone basins are welcome.
Scope of the journal includes:
• Reviews of tropical cyclones exhibiting unusual characteristics or behavior or resulting in disastrous impacts on Typhoon Committee Members and other regional WMO bodies
• Advances in applied and basic tropical cyclone research or technology to improve tropical cyclone forecasts and warnings
• Basic theoretical studies of tropical cyclones
• Event reports, compelling images, and topic review reports of tropical cyclones
• Impacts, risk assessments, and risk management techniques related to tropical cyclones