Suppressing Dielectric Loss in MXene/Polymer Nanocomposites through Interfacial Interactions

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-03-25 DOI:10.1021/acsnano.4c00475
Shaobo Tu*, Longguo Qiu, Chen Liu, Fanshuai Zeng, You-You Yuan, Mohamed Nejib Hedhili, Valentina Musteata, Yinchang Ma, Kun Liang, Naisheng Jiang, Husam N. Alshareef* and Xixiang Zhang*, 
{"title":"Suppressing Dielectric Loss in MXene/Polymer Nanocomposites through Interfacial Interactions","authors":"Shaobo Tu*,&nbsp;Longguo Qiu,&nbsp;Chen Liu,&nbsp;Fanshuai Zeng,&nbsp;You-You Yuan,&nbsp;Mohamed Nejib Hedhili,&nbsp;Valentina Musteata,&nbsp;Yinchang Ma,&nbsp;Kun Liang,&nbsp;Naisheng Jiang,&nbsp;Husam N. Alshareef* and Xixiang Zhang*,&nbsp;","doi":"10.1021/acsnano.4c00475","DOIUrl":null,"url":null,"abstract":"<p >Although numerous polymer-based composites exhibit excellent dielectric permittivity, their dielectric performance in various applications is severely hampered by high dielectric loss induced by interfacial space charging and a leakage current. Herein, we demonstrate that embedding molten salt etched MXene into a poly(vinylidene fluoride–trifluoroethylene–chlorofluoroethylene) (P(VDF–TrFE–CFE))/poly(methyl methacrylate) (PMMA) hybrid matrix induces strong interfacial interactions, forming a close-packed inner polymer layer and leading to significantly suppressed dielectric loss and markedly increased dielectric permittivity over a broad frequency range. The intensive molecular interaction caused by the dense electronegative functional terminations (−O and −Cl) in MXene results in restricted polymer chain movement and dense molecular arrangement, which reduce the transportation of the mobile charge carriers. Consequently, compared to the neat polymer, the dielectric constant of the composite with 2.8 wt % MXene filler increases from ∼52 to ∼180 and the dielectric loss remains at the same value (∼0.06) at 1 kHz. We demonstrate that the dielectric loss suppression is largely due to the formation of close-packed interfaces between the MXene and the polymer matrix.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"18 14","pages":"10196–10205"},"PeriodicalIF":15.8000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c00475","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Although numerous polymer-based composites exhibit excellent dielectric permittivity, their dielectric performance in various applications is severely hampered by high dielectric loss induced by interfacial space charging and a leakage current. Herein, we demonstrate that embedding molten salt etched MXene into a poly(vinylidene fluoride–trifluoroethylene–chlorofluoroethylene) (P(VDF–TrFE–CFE))/poly(methyl methacrylate) (PMMA) hybrid matrix induces strong interfacial interactions, forming a close-packed inner polymer layer and leading to significantly suppressed dielectric loss and markedly increased dielectric permittivity over a broad frequency range. The intensive molecular interaction caused by the dense electronegative functional terminations (−O and −Cl) in MXene results in restricted polymer chain movement and dense molecular arrangement, which reduce the transportation of the mobile charge carriers. Consequently, compared to the neat polymer, the dielectric constant of the composite with 2.8 wt % MXene filler increases from ∼52 to ∼180 and the dielectric loss remains at the same value (∼0.06) at 1 kHz. We demonstrate that the dielectric loss suppression is largely due to the formation of close-packed interfaces between the MXene and the polymer matrix.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过界面相互作用抑制 MXene/聚合物纳米复合材料的介电损耗
尽管许多聚合物基复合材料表现出优异的介电常数,但由于界面空间充电和泄漏电流导致的高介电损耗,它们在各种应用中的介电性能受到严重影响。在此,我们证明了将熔盐蚀刻的 MXene 嵌入聚偏氟乙烯-三氟氯乙烯(P(VDF-TrFE-CFE))/聚甲基丙烯酸甲酯(PMMA)混合基质中会诱发强烈的界面相互作用,形成紧密堆积的聚合物内层,从而在宽频率范围内显著抑制介电损耗并明显提高介电常数。MXene 中致密的电负性官能团端点(-O 和 -Cl)引起的密集分子相互作用导致聚合物链运动受限和分子排列致密,从而减少了移动电荷载流子的传输。因此,与纯聚合物相比,含有 2.8 wt % MXene 填料的复合材料的介电常数从 ∼52 增加到 ∼180,而 1 kHz 时的介电损耗保持不变(∼0.06)。我们证明,介电损耗的抑制主要是由于 MXene 与聚合物基体之间形成了紧密堆积的界面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Reconfiguring van der Waals Metal–Semiconductor Contacts via Selenium Intercalation/Deintercalation Post-Treatment Correction to “Direct Excitation Transfer in Plasmonic Metal-Chalcopyrite Hybrids: Insights from Single Particle Line Shape Analysis” Green Carbon Dots/CaCO3/Abamectin Colloidal Pesticide Formulation for Safer and More Effective Pest Management Automating Blueprints for the Assembly of Colloidal Quasicrystal Clusters Applications of Nanotechnology for Spatial Omics: Biological Structures and Functions at Nanoscale Resolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1