{"title":"Advanced Authentication and Energy-Efficient Routing Protocol for Wireless Body Area Networks","authors":"Padma Vijetha Dev Bakkaiahgari, K. Venkata Prasad","doi":"10.1142/s0218126624502396","DOIUrl":null,"url":null,"abstract":"<p>Recently, wireless body area network (WBAN) becomes a hot research topic in the advanced healthcare system. The WBAN plays a vital role in monitoring the physiological parameters of the human body with sensors. The sensors are small in size, and it has a small-sized battery with limited life. Hence, the energy is limited in the multi-hop routing process. The patient data is collected by the sensor, and the data are transmitted with high energy consumption. It causes failure in the data transmission path. To avoid this, the data transmission process should be optimized. This paper presents an advanced authentication and energy-efficient routing protocol (AAERP) for optimal routing paths in WBAN. Patients’ data are aggregated from the WBAN through the IoMT devices in the initial stage. To secure the patient’s private data, a hybrid mechanism of the elliptic curve cryptosystem (ECC) and Paillier cryptosystem is proposed for the data encryption process. Data security is improved by authenticating the data before transmission using an encryption algorithm. Before the routing process, the data encryption approach converts the original plain text data into ciphertext data. This encryption approach assists in avoiding intrusions in the network system. The encrypted data are optimally routed with the help of the teamwork optimization algorithm (TOA) approach. The optimal path selection using this optimization technique improves the effectiveness and robustness of the system. The experimental setup is performed by using Python software. The efficacy of the proposed model is evaluated by solving parameters like network lifetime, network throughput, residual energy, success rate, number of packets received, number of packets sent, and number of packets dropped. The performance of the proposed model is measured by comparing the obtained results with several existing models.</p>","PeriodicalId":54866,"journal":{"name":"Journal of Circuits Systems and Computers","volume":"17 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Circuits Systems and Computers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1142/s0218126624502396","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, wireless body area network (WBAN) becomes a hot research topic in the advanced healthcare system. The WBAN plays a vital role in monitoring the physiological parameters of the human body with sensors. The sensors are small in size, and it has a small-sized battery with limited life. Hence, the energy is limited in the multi-hop routing process. The patient data is collected by the sensor, and the data are transmitted with high energy consumption. It causes failure in the data transmission path. To avoid this, the data transmission process should be optimized. This paper presents an advanced authentication and energy-efficient routing protocol (AAERP) for optimal routing paths in WBAN. Patients’ data are aggregated from the WBAN through the IoMT devices in the initial stage. To secure the patient’s private data, a hybrid mechanism of the elliptic curve cryptosystem (ECC) and Paillier cryptosystem is proposed for the data encryption process. Data security is improved by authenticating the data before transmission using an encryption algorithm. Before the routing process, the data encryption approach converts the original plain text data into ciphertext data. This encryption approach assists in avoiding intrusions in the network system. The encrypted data are optimally routed with the help of the teamwork optimization algorithm (TOA) approach. The optimal path selection using this optimization technique improves the effectiveness and robustness of the system. The experimental setup is performed by using Python software. The efficacy of the proposed model is evaluated by solving parameters like network lifetime, network throughput, residual energy, success rate, number of packets received, number of packets sent, and number of packets dropped. The performance of the proposed model is measured by comparing the obtained results with several existing models.
期刊介绍:
Journal of Circuits, Systems, and Computers covers a wide scope, ranging from mathematical foundations to practical engineering design in the general areas of circuits, systems, and computers with focus on their circuit aspects. Although primary emphasis will be on research papers, survey, expository and tutorial papers are also welcome. The journal consists of two sections:
Papers - Contributions in this section may be of a research or tutorial nature. Research papers must be original and must not duplicate descriptions or derivations available elsewhere. The author should limit paper length whenever this can be done without impairing quality.
Letters - This section provides a vehicle for speedy publication of new results and information of current interest in circuits, systems, and computers. Focus will be directed to practical design- and applications-oriented contributions, but publication in this section will not be restricted to this material. These letters are to concentrate on reporting the results obtained, their significance and the conclusions, while including only the minimum of supporting details required to understand the contribution. Publication of a manuscript in this manner does not preclude a later publication with a fully developed version.