{"title":"Analysis and Simulation of Current Balancer Circuit for Phase-Gain Correction of Unbalanced Differential Signals","authors":"Zainab Baharvand, Abdolreza Nabavi, Habibollah Zolfkhani","doi":"10.1142/s021812662450244x","DOIUrl":null,"url":null,"abstract":"<p>The phase and gain imbalance of a balun output can be adjusted by a differential current balancer (DCB) circuit. The performance of DCB circuit, for correcting the phase (gain) imbalance, is analyzed for a wide range of input signal level, and the accuracy is verified with circuit simulation. To illustrate the phase-error/gain-error (PE/GE) correction, a 30–40<span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>GHz DCB circuit is designed and simulated in a 180-nm CMOS process. The DCB is examined for input PE, <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Δ</mi><msub><mrow><mi>𝜃</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span><span></span>, of <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">−</mo><mn>2</mn><msup><mrow><mn>0</mn></mrow><mrow><mo stretchy=\"false\">∘</mo></mrow></msup><mo>≤</mo><mi mathvariant=\"normal\">Δ</mi><msub><mrow><mi>𝜃</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>≤</mo><mo stretchy=\"false\">+</mo><mn>2</mn><msup><mrow><mn>0</mn></mrow><mrow><mo stretchy=\"false\">∘</mo></mrow></msup></math></span><span></span> and input GE, G<sub><i>A</i></sub>, of <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">−</mo><mn>2</mn><mspace width=\".17em\"></mspace><mstyle><mtext mathvariant=\"normal\">dB</mtext></mstyle><mo>≤</mo><mn>2</mn><msup><mrow><mn>0</mn></mrow><mrow><mo stretchy=\"false\">∗</mo></mrow></msup><mo>log</mo><mo stretchy=\"false\">(</mo><mn>1</mn><mo stretchy=\"false\">+</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>A</mi></mrow></msub><mo stretchy=\"false\">)</mo><mo>≤</mo><mo stretchy=\"false\">+</mo><mn>2</mn></math></span><span></span><span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>dB. Analysis and simulation illustrate an output phase error <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><msub><mrow><mstyle><mtext mathvariant=\"normal\">OPE</mtext></mstyle></mrow><mrow><mstyle><mtext mathvariant=\"normal\">DCB</mtext></mstyle></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> of <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">−</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo stretchy=\"false\">∘</mo></mrow></msup><mo>≤</mo><msub><mrow><mstyle><mtext mathvariant=\"normal\">OPE</mtext></mstyle></mrow><mrow><mstyle><mtext mathvariant=\"normal\"> DCB</mtext></mstyle></mrow></msub><mo>≤</mo><mo stretchy=\"false\">+</mo><msup><mrow><mn>2</mn></mrow><mrow><mo stretchy=\"false\">∘</mo></mrow></msup></math></span><span></span> and output gain error <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><msub><mrow><mstyle><mtext mathvariant=\"normal\">OGE</mtext></mstyle></mrow><mrow><mstyle><mtext mathvariant=\"normal\">DCB</mtext></mstyle></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> of <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">−</mo><mn>1</mn><mspace width=\".17em\"></mspace><mstyle><mtext mathvariant=\"normal\">dB</mtext></mstyle><mo>≤</mo><msub><mrow><mstyle><mtext mathvariant=\"normal\">OGE</mtext></mstyle></mrow><mrow><mstyle><mtext mathvariant=\"normal\">DCB</mtext></mstyle></mrow></msub><mo>≤</mo><mo stretchy=\"false\">+</mo><mn>1</mn><mo>.</mo><mn>5</mn></math></span><span></span><span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>dB, over frequency range of 20–50<span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>GHz. The results of DCB circuit for PE (GE) compensation are compared to that of phase-correction technique (PCT) circuit, illustrating the superior phase (gain) imbalance correction of the DCB circuit with lower NF and DC power consumption.</p>","PeriodicalId":54866,"journal":{"name":"Journal of Circuits Systems and Computers","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Circuits Systems and Computers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1142/s021812662450244x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
The phase and gain imbalance of a balun output can be adjusted by a differential current balancer (DCB) circuit. The performance of DCB circuit, for correcting the phase (gain) imbalance, is analyzed for a wide range of input signal level, and the accuracy is verified with circuit simulation. To illustrate the phase-error/gain-error (PE/GE) correction, a 30–40GHz DCB circuit is designed and simulated in a 180-nm CMOS process. The DCB is examined for input PE, , of and input GE, GA, of dB. Analysis and simulation illustrate an output phase error of and output gain error of dB, over frequency range of 20–50GHz. The results of DCB circuit for PE (GE) compensation are compared to that of phase-correction technique (PCT) circuit, illustrating the superior phase (gain) imbalance correction of the DCB circuit with lower NF and DC power consumption.
期刊介绍:
Journal of Circuits, Systems, and Computers covers a wide scope, ranging from mathematical foundations to practical engineering design in the general areas of circuits, systems, and computers with focus on their circuit aspects. Although primary emphasis will be on research papers, survey, expository and tutorial papers are also welcome. The journal consists of two sections:
Papers - Contributions in this section may be of a research or tutorial nature. Research papers must be original and must not duplicate descriptions or derivations available elsewhere. The author should limit paper length whenever this can be done without impairing quality.
Letters - This section provides a vehicle for speedy publication of new results and information of current interest in circuits, systems, and computers. Focus will be directed to practical design- and applications-oriented contributions, but publication in this section will not be restricted to this material. These letters are to concentrate on reporting the results obtained, their significance and the conclusions, while including only the minimum of supporting details required to understand the contribution. Publication of a manuscript in this manner does not preclude a later publication with a fully developed version.