Analysis and Simulation of Current Balancer Circuit for Phase-Gain Correction of Unbalanced Differential Signals

IF 0.9 4区 工程技术 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Journal of Circuits Systems and Computers Pub Date : 2024-03-28 DOI:10.1142/s021812662450244x
Zainab Baharvand, Abdolreza Nabavi, Habibollah Zolfkhani
{"title":"Analysis and Simulation of Current Balancer Circuit for Phase-Gain Correction of Unbalanced Differential Signals","authors":"Zainab Baharvand, Abdolreza Nabavi, Habibollah Zolfkhani","doi":"10.1142/s021812662450244x","DOIUrl":null,"url":null,"abstract":"<p>The phase and gain imbalance of a balun output can be adjusted by a differential current balancer (DCB) circuit. The performance of DCB circuit, for correcting the phase (gain) imbalance, is analyzed for a wide range of input signal level, and the accuracy is verified with circuit simulation. To illustrate the phase-error/gain-error (PE/GE) correction, a 30–40<span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>GHz DCB circuit is designed and simulated in a 180-nm CMOS process. The DCB is examined for input PE, <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Δ</mi><msub><mrow><mi>𝜃</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span><span></span>, of <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">−</mo><mn>2</mn><msup><mrow><mn>0</mn></mrow><mrow><mo stretchy=\"false\">∘</mo></mrow></msup><mo>≤</mo><mi mathvariant=\"normal\">Δ</mi><msub><mrow><mi>𝜃</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>≤</mo><mo stretchy=\"false\">+</mo><mn>2</mn><msup><mrow><mn>0</mn></mrow><mrow><mo stretchy=\"false\">∘</mo></mrow></msup></math></span><span></span> and input GE, G<sub><i>A</i></sub>, of <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">−</mo><mn>2</mn><mspace width=\".17em\"></mspace><mstyle><mtext mathvariant=\"normal\">dB</mtext></mstyle><mo>≤</mo><mn>2</mn><msup><mrow><mn>0</mn></mrow><mrow><mo stretchy=\"false\">∗</mo></mrow></msup><mo>log</mo><mo stretchy=\"false\">(</mo><mn>1</mn><mo stretchy=\"false\">+</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>A</mi></mrow></msub><mo stretchy=\"false\">)</mo><mo>≤</mo><mo stretchy=\"false\">+</mo><mn>2</mn></math></span><span></span><span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>dB. Analysis and simulation illustrate an output phase error <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><msub><mrow><mstyle><mtext mathvariant=\"normal\">OPE</mtext></mstyle></mrow><mrow><mstyle><mtext mathvariant=\"normal\">DCB</mtext></mstyle></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> of <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">−</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo stretchy=\"false\">∘</mo></mrow></msup><mo>≤</mo><msub><mrow><mstyle><mtext mathvariant=\"normal\">OPE</mtext></mstyle></mrow><mrow><mstyle><mtext mathvariant=\"normal\"> DCB</mtext></mstyle></mrow></msub><mo>≤</mo><mo stretchy=\"false\">+</mo><msup><mrow><mn>2</mn></mrow><mrow><mo stretchy=\"false\">∘</mo></mrow></msup></math></span><span></span> and output gain error <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><msub><mrow><mstyle><mtext mathvariant=\"normal\">OGE</mtext></mstyle></mrow><mrow><mstyle><mtext mathvariant=\"normal\">DCB</mtext></mstyle></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> of <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">−</mo><mn>1</mn><mspace width=\".17em\"></mspace><mstyle><mtext mathvariant=\"normal\">dB</mtext></mstyle><mo>≤</mo><msub><mrow><mstyle><mtext mathvariant=\"normal\">OGE</mtext></mstyle></mrow><mrow><mstyle><mtext mathvariant=\"normal\">DCB</mtext></mstyle></mrow></msub><mo>≤</mo><mo stretchy=\"false\">+</mo><mn>1</mn><mo>.</mo><mn>5</mn></math></span><span></span><span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>dB, over frequency range of 20–50<span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>GHz. The results of DCB circuit for PE (GE) compensation are compared to that of phase-correction technique (PCT) circuit, illustrating the superior phase (gain) imbalance correction of the DCB circuit with lower NF and DC power consumption.</p>","PeriodicalId":54866,"journal":{"name":"Journal of Circuits Systems and Computers","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Circuits Systems and Computers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1142/s021812662450244x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

The phase and gain imbalance of a balun output can be adjusted by a differential current balancer (DCB) circuit. The performance of DCB circuit, for correcting the phase (gain) imbalance, is analyzed for a wide range of input signal level, and the accuracy is verified with circuit simulation. To illustrate the phase-error/gain-error (PE/GE) correction, a 30–40GHz DCB circuit is designed and simulated in a 180-nm CMOS process. The DCB is examined for input PE, Δ𝜃A, of 20Δ𝜃A+20 and input GE, GA, of 2dB20log(1+GA)+2dB. Analysis and simulation illustrate an output phase error (OPEDCB) of 10OPE DCB+2 and output gain error (OGEDCB) of 1dBOGEDCB+1.5dB, over frequency range of 20–50GHz. The results of DCB circuit for PE (GE) compensation are compared to that of phase-correction technique (PCT) circuit, illustrating the superior phase (gain) imbalance correction of the DCB circuit with lower NF and DC power consumption.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于不平衡差分信号相位增益校正的电流平衡器电路分析与仿真
平衡器输出的相位和增益不平衡可通过差分电流平衡器(DCB)电路进行调节。本文分析了 DCB 电路在宽输入信号电平范围内校正相位(增益)不平衡的性能,并通过电路仿真验证了其准确性。为了说明相位误差/增益误差(PE/GE)校正,在 180 纳米 CMOS 工艺中设计并仿真了 30-40GHz DCB 电路。该 DCB 在输入 PE(Δ𝜃A) 为 -20∘≤Δ𝜃A≤+20∘ 和输入 GE(GA) 为 -2dB≤20∗log(1+GA)≤+2dB 时进行检验。分析和仿真表明,在 20-50GHz 频率范围内,输出相位误差 (OPEDCB) 为 -10∘≤OPE DCB≤+2∘ ,输出增益误差 (OGEDCB) 为 -1dB≤OGEDCB≤+1.5dB 。用于 PE(GE)补偿的 DCB 电路的结果与相位校正技术(PCT)电路的结果进行了比较,结果表明 DCB 电路的相位(增益)不平衡校正效果更佳,NF 和直流功耗更低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Circuits Systems and Computers
Journal of Circuits Systems and Computers 工程技术-工程:电子与电气
CiteScore
2.80
自引率
26.70%
发文量
350
审稿时长
5.4 months
期刊介绍: Journal of Circuits, Systems, and Computers covers a wide scope, ranging from mathematical foundations to practical engineering design in the general areas of circuits, systems, and computers with focus on their circuit aspects. Although primary emphasis will be on research papers, survey, expository and tutorial papers are also welcome. The journal consists of two sections: Papers - Contributions in this section may be of a research or tutorial nature. Research papers must be original and must not duplicate descriptions or derivations available elsewhere. The author should limit paper length whenever this can be done without impairing quality. Letters - This section provides a vehicle for speedy publication of new results and information of current interest in circuits, systems, and computers. Focus will be directed to practical design- and applications-oriented contributions, but publication in this section will not be restricted to this material. These letters are to concentrate on reporting the results obtained, their significance and the conclusions, while including only the minimum of supporting details required to understand the contribution. Publication of a manuscript in this manner does not preclude a later publication with a fully developed version.
期刊最新文献
An Intelligent Apple Identification Method via the Collaboration of YOLOv5 Algorithm and Fast-Guided Filter Theory Careful Seeding for k-Medois Clustering with Incremental k-Means++ Initialization Analysis and Simulation of Current Balancer Circuit for Phase-Gain Correction of Unbalanced Differential Signals SPC-Indexed Indirect Branch Hardware Cache Redirecting Technique in Binary Translation Image Classification Method Based on Multi-Scale Convolutional Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1