首页 > 最新文献

Journal of Circuits Systems and Computers最新文献

英文 中文
An Intelligent Apple Identification Method via the Collaboration of YOLOv5 Algorithm and Fast-Guided Filter Theory 通过 YOLOv5 算法和快速引导滤波理论的合作实现智能苹果识别方法
IF 1.5 4区 工程技术 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2024-06-01 DOI: 10.1142/s0218126624501883
Eryue Zhang, He Zhang

Apple-picking robot can promote the development of smart agriculture, and accurate object recognition in complex natural environments using deep learning algorithms is critical. However, research has shown that changes in illumination and object occlusion remain significant challenges for recognition. In order to improve the accuracy of apple apple-picking robot’s identification and positioning of apples in natural environment, a method using YOLOv5 (You Only Look Once, YOLO) combined with fast-guided filter is proposed. By introducing a fast-guided filtering module, the ability to extract image features is improved, and the problem of inaccurate occlusion targets and edge detection is solved; K-means clustering algorithm is introduced in improving YOLOv5, which can realize automatic adjustment of image size and step size; BiFPN structure is introduced in Neck network to add weighted feature fusion to highlight the detailed features. The results show that the algorithm proposed in this paper can well remove noise information such as occlusion edge blurring in apple images in a natural light environment. In the real orchard environment, the apple recognition accuracy rate reached 97.8%, the recall rate was 97.3% and the recognition rate was about 26.84fps. The results show that this research based on YOLOv5 and fast-guided filtering can realize fast and accurate identification of apple fruits in natural environment, and meet the practical application requirements of real-time target detection.

苹果采摘机器人可以促进智慧农业的发展,而利用深度学习算法在复杂的自然环境中准确识别物体至关重要。然而,研究表明,光照变化和物体遮挡仍然是识别的重大挑战。为了提高苹果采摘机器人在自然环境中识别和定位苹果的准确性,本文提出了一种使用 YOLOv5(You Only Look Once,YOLO)与快速引导滤波器相结合的方法。通过引入快速引导滤波模块,提高了提取图像特征的能力,解决了遮挡目标和边缘检测不准确的问题;在改进 YOLOv5 时引入了 K-means 聚类算法,可实现图像大小和步长的自动调整;在 Neck 网络中引入 BiFPN 结构,增加加权特征融合,突出细节特征。结果表明,本文提出的算法能很好地去除自然光环境下苹果图像中的遮挡边缘模糊等噪声信息。在真实果园环境中,苹果识别准确率达到 97.8%,召回率为 97.3%,识别率约为 26.84fps。结果表明,这项基于 YOLOv5 和快速引导滤波的研究可以实现自然环境下苹果果实的快速准确识别,满足实时目标检测的实际应用要求。
{"title":"An Intelligent Apple Identification Method via the Collaboration of YOLOv5 Algorithm and Fast-Guided Filter Theory","authors":"Eryue Zhang, He Zhang","doi":"10.1142/s0218126624501883","DOIUrl":"https://doi.org/10.1142/s0218126624501883","url":null,"abstract":"<p>Apple-picking robot can promote the development of smart agriculture, and accurate object recognition in complex natural environments using deep learning algorithms is critical. However, research has shown that changes in illumination and object occlusion remain significant challenges for recognition. In order to improve the accuracy of apple apple-picking robot’s identification and positioning of apples in natural environment, a method using YOLOv5 (You Only Look Once, YOLO) combined with fast-guided filter is proposed. By introducing a fast-guided filtering module, the ability to extract image features is improved, and the problem of inaccurate occlusion targets and edge detection is solved; <span><math altimg=\"eq-00001.gif\" display=\"inline\"><mi>K</mi></math></span><span></span>-means clustering algorithm is introduced in improving YOLOv5, which can realize automatic adjustment of image size and step size; BiFPN structure is introduced in Neck network to add weighted feature fusion to highlight the detailed features. The results show that the algorithm proposed in this paper can well remove noise information such as occlusion edge blurring in apple images in a natural light environment. In the real orchard environment, the apple recognition accuracy rate reached 97.8%, the recall rate was 97.3% and the recognition rate was about 26.84<span><math altimg=\"eq-00002.gif\" display=\"inline\"><mspace width=\".17em\"></mspace></math></span><span></span>fps. The results show that this research based on YOLOv5 and fast-guided filtering can realize fast and accurate identification of apple fruits in natural environment, and meet the practical application requirements of real-time target detection.</p>","PeriodicalId":54866,"journal":{"name":"Journal of Circuits Systems and Computers","volume":"8 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141257378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Careful Seeding for k-Medois Clustering with Incremental k-Means++ Initialization 利用增量 k-Means++ 初始化对 k-Medois 聚类进行仔细播种
IF 1.5 4区 工程技术 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2024-04-13 DOI: 10.1142/s0218126624501846
Difei Cheng, Yunfeng Zhang, Ruinan Jin

K-medoids clustering is a popular variant of k-means clustering and widely used in pattern recognition and machine learning. A main drawback of k-medoids clustering is that an improper initialization can cause it to get trapped in local optima. An improved k-medoids clustering algorithm, called INCKM algorithm, which is the first to apply incremental initialization to k-medoids clustering, was recently proposed to overcome this drawback. The INCKM algorithm requires the construction of a subset of candidate medoids determined by one hyperparameter for initialization, and meanwhile, it always fails when dealing with imbalanced datasets with an incorrect hyperparameter selection. In this paper, we propose a novel k-medoids clustering algorithm, called incremental k-means++ (INCKPP) algorithm, which initializes with a novel incremental manner, attempting to optimally add one new cluster center at each stage through a non-parametric and stochastic k-means++ initialization. The INCKPP algorithm overcomes the difficulty of hyperparameter selection in the INCKM algorithm, improves the clustering performance, and can deal with imbalanced datasets well. However, the INCKPP algorithm is not computationally efficient enough. To deal with this, we further propose an improved INCKPP algorithm, called INCKPPsample algorithm which improves the clustering efficiency while maintaining the clustering performance of the INCKPP algorithm. Extensive results from experiments on both synthetic and real-world datasets, including imbalanced datasets, illustrate that the proposed algorithms outperforms than the other compared algorithms.

K-medoids 聚类是 K-means 聚类的一种流行变体,广泛应用于模式识别和机器学习。K-medoids 聚类的一个主要缺点是,不恰当的初始化会使其陷入局部最优状态。为了克服这一缺点,最近提出了一种改进的 k-medoids 聚类算法,称为 INCKM 算法,它首次将增量初始化应用于 k-medoids 聚类。INCKM 算法需要构建由一个超参数决定的候选 Medoids 子集来进行初始化,同时,在处理不平衡数据集时,超参数选择不正确会导致 INCKM 算法失败。在本文中,我们提出了一种新的 k-medoids 聚类算法,称为增量 k-means++ 算法(INCKPP),它以一种新的增量方式进行初始化,通过非参数和随机的 k-means++ 初始化,尝试在每个阶段优化添加一个新的聚类中心。INCKPP 算法克服了 INCKM 算法中超参数选择的困难,提高了聚类性能,并能很好地处理不平衡数据集。但是,INCKPP 算法的计算效率不够高。针对这一问题,我们进一步提出了一种改进的 INCKPP 算法,即 INCKPPsample 算法,它在保持 INCKPP 算法聚类性能的基础上提高了聚类效率。在合成数据集和真实数据集(包括不平衡数据集)上的大量实验结果表明,所提出的算法优于其他比较算法。
{"title":"Careful Seeding for k-Medois Clustering with Incremental k-Means++ Initialization","authors":"Difei Cheng, Yunfeng Zhang, Ruinan Jin","doi":"10.1142/s0218126624501846","DOIUrl":"https://doi.org/10.1142/s0218126624501846","url":null,"abstract":"<p><span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>K</mi></math></span><span></span>-medoids clustering is a popular variant of <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi></math></span><span></span>-means clustering and widely used in pattern recognition and machine learning. A main drawback of <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi></math></span><span></span>-medoids clustering is that an improper initialization can cause it to get trapped in local optima. An improved <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi></math></span><span></span>-medoids clustering algorithm, called INCKM algorithm, which is the first to apply incremental initialization to <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi></math></span><span></span>-medoids clustering, was recently proposed to overcome this drawback. The INCKM algorithm requires the construction of a subset of candidate medoids determined by one hyperparameter for initialization, and meanwhile, it always fails when dealing with imbalanced datasets with an incorrect hyperparameter selection. In this paper, we propose a novel <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi></math></span><span></span>-medoids clustering algorithm, called incremental <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi></math></span><span></span>-means++ (INCKPP) algorithm, which initializes with a novel incremental manner, attempting to optimally add one new cluster center at each stage through a non-parametric and stochastic <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi></math></span><span></span>-means++ initialization. The INCKPP algorithm overcomes the difficulty of hyperparameter selection in the INCKM algorithm, improves the clustering performance, and can deal with imbalanced datasets well. However, the INCKPP algorithm is not computationally efficient enough. To deal with this, we further propose an improved INCKPP algorithm, called INCKPP<span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow></mrow><mrow><mstyle mathvariant=\"bold\"><mi>s</mi><mi>a</mi><mi>m</mi><mi>p</mi><mi>l</mi><mi>e</mi></mstyle></mrow></msub></math></span><span></span> algorithm which improves the clustering efficiency while maintaining the clustering performance of the INCKPP algorithm. Extensive results from experiments on both synthetic and real-world datasets, including imbalanced datasets, illustrate that the proposed algorithms outperforms than the other compared algorithms.</p>","PeriodicalId":54866,"journal":{"name":"Journal of Circuits Systems and Computers","volume":"9 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140564396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SPC-Indexed Indirect Branch Hardware Cache Redirecting Technique in Binary Translation 二进制转换中的 SPC 索引间接分支硬件缓存重定向技术
IF 1.5 4区 工程技术 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2024-03-28 DOI: 10.1142/s0218126624502426
Chunqiang Li, Zhiwei Liu, Yunhai Shang, Lenian He, Xiaolang Yan

In the domain of process virtual machine (PVM) binary translation, the difference in address space layout between the guest program and the translated program requires the recalculation of jump instruction targets, resulting in suboptimal execution efficiency. This paper presents a novel method called SPC-Indexed Indirect Branch Hardware Cache Redirecting (SPCIC) technique. SPCIC utilizes specialized branch instruction to represent indirect branches from guest programs while frequently-used target addresses are cached in a customized hardware mapping table. When translating an indirect branch, SPCIC queries the jump target cache first to achieve a fast redirection unless the destination address is not cached. Besides, SPCIC merely falls back to the software-based remapping approach when the query fails, improving the translation efficiency to the greatest extent. SPCIC is implemented on the QEMU platform to accelerate the translation of ARM payloads into RISC-V. Experiments are carried on SPEC2006 to demonstrate the effectiveness of SPCIC for reducing the runtime overhead of indirect branch translation. The experimental results indicate up to 11% average improvement and 35% maximum improvement are obtained on the selected benchmark.

在进程虚拟机(PVM)二进制转换领域,由于客程序和被转换程序的地址空间布局不同,需要重新计算跳转指令目标,从而导致执行效率不理想。本文提出了一种名为 SPC-Indexed Indirect Branch Hardware Cache Redirecting(SPCIC)技术的新方法。SPCIC 利用专门的分支指令来表示访客程序的间接分支,而常用的目标地址则缓存在定制的硬件映射表中。在转换间接分支时,除非目标地址没有缓存,否则 SPCIC 会首先查询跳转目标缓存,以实现快速重定向。此外,当查询失败时,SPCIC 只会退回到基于软件的重映射方法,从而最大程度地提高了转换效率。SPCIC 是在 QEMU 平台上实现的,用于加速 ARM 有效载荷到 RISC-V 的转换。在 SPEC2006 上进行了实验,以证明 SPCIC 在减少间接分支转换的运行时开销方面的有效性。实验结果表明,在所选基准上,平均改进幅度达 11%,最大改进幅度达 35%。
{"title":"SPC-Indexed Indirect Branch Hardware Cache Redirecting Technique in Binary Translation","authors":"Chunqiang Li, Zhiwei Liu, Yunhai Shang, Lenian He, Xiaolang Yan","doi":"10.1142/s0218126624502426","DOIUrl":"https://doi.org/10.1142/s0218126624502426","url":null,"abstract":"<p>In the domain of process virtual machine (PVM) binary translation, the difference in address space layout between the guest program and the translated program requires the recalculation of jump instruction targets, resulting in suboptimal execution efficiency. This paper presents a novel method called SPC-Indexed Indirect Branch Hardware Cache Redirecting (SPCIC) technique. SPCIC utilizes specialized branch instruction to represent indirect branches from guest programs while frequently-used target addresses are cached in a customized hardware mapping table. When translating an indirect branch, SPCIC queries the jump target cache first to achieve a fast redirection unless the destination address is not cached. Besides, SPCIC merely falls back to the software-based remapping approach when the query fails, improving the translation efficiency to the greatest extent. SPCIC is implemented on the QEMU platform to accelerate the translation of ARM payloads into RISC-V. Experiments are carried on SPEC2006 to demonstrate the effectiveness of SPCIC for reducing the runtime overhead of indirect branch translation. The experimental results indicate up to 11% average improvement and 35% maximum improvement are obtained on the selected benchmark.</p>","PeriodicalId":54866,"journal":{"name":"Journal of Circuits Systems and Computers","volume":"45 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140322275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis and Simulation of Current Balancer Circuit for Phase-Gain Correction of Unbalanced Differential Signals 用于不平衡差分信号相位增益校正的电流平衡器电路分析与仿真
IF 1.5 4区 工程技术 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2024-03-28 DOI: 10.1142/s021812662450244x
Zainab Baharvand, Abdolreza Nabavi, Habibollah Zolfkhani
<p>The phase and gain imbalance of a balun output can be adjusted by a differential current balancer (DCB) circuit. The performance of DCB circuit, for correcting the phase (gain) imbalance, is analyzed for a wide range of input signal level, and the accuracy is verified with circuit simulation. To illustrate the phase-error/gain-error (PE/GE) correction, a 30–40<span><math altimg="eq-00001.gif" display="inline" overflow="scroll"><mspace width=".17em"></mspace></math></span><span></span>GHz DCB circuit is designed and simulated in a 180-nm CMOS process. The DCB is examined for input PE, <span><math altimg="eq-00002.gif" display="inline" overflow="scroll"><mi mathvariant="normal">Δ</mi><msub><mrow><mi>𝜃</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span><span></span>, of <span><math altimg="eq-00003.gif" display="inline" overflow="scroll"><mo stretchy="false">−</mo><mn>2</mn><msup><mrow><mn>0</mn></mrow><mrow><mo stretchy="false">∘</mo></mrow></msup><mo>≤</mo><mi mathvariant="normal">Δ</mi><msub><mrow><mi>𝜃</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>≤</mo><mo stretchy="false">+</mo><mn>2</mn><msup><mrow><mn>0</mn></mrow><mrow><mo stretchy="false">∘</mo></mrow></msup></math></span><span></span> and input GE, G<sub><i>A</i></sub>, of <span><math altimg="eq-00004.gif" display="inline" overflow="scroll"><mo stretchy="false">−</mo><mn>2</mn><mspace width=".17em"></mspace><mstyle><mtext mathvariant="normal">dB</mtext></mstyle><mo>≤</mo><mn>2</mn><msup><mrow><mn>0</mn></mrow><mrow><mo stretchy="false">∗</mo></mrow></msup><mo>log</mo><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">+</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>A</mi></mrow></msub><mo stretchy="false">)</mo><mo>≤</mo><mo stretchy="false">+</mo><mn>2</mn></math></span><span></span><span><math altimg="eq-00005.gif" display="inline" overflow="scroll"><mspace width=".17em"></mspace></math></span><span></span>dB. Analysis and simulation illustrate an output phase error <span><math altimg="eq-00006.gif" display="inline" overflow="scroll"><mo stretchy="false">(</mo><msub><mrow><mstyle><mtext mathvariant="normal">OPE</mtext></mstyle></mrow><mrow><mstyle><mtext mathvariant="normal">DCB</mtext></mstyle></mrow></msub><mo stretchy="false">)</mo></math></span><span></span> of <span><math altimg="eq-00007.gif" display="inline" overflow="scroll"><mo stretchy="false">−</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo stretchy="false">∘</mo></mrow></msup><mo>≤</mo><msub><mrow><mstyle><mtext mathvariant="normal">OPE</mtext></mstyle></mrow><mrow><mstyle><mtext mathvariant="normal"> DCB</mtext></mstyle></mrow></msub><mo>≤</mo><mo stretchy="false">+</mo><msup><mrow><mn>2</mn></mrow><mrow><mo stretchy="false">∘</mo></mrow></msup></math></span><span></span> and output gain error <span><math altimg="eq-00008.gif" display="inline" overflow="scroll"><mo stretchy="false">(</mo><msub><mrow><mstyle><mtext mathvariant="normal">OGE</mtext></mstyle></mrow><mrow><mstyle><mtext mathvariant="normal">DCB<
平衡器输出的相位和增益不平衡可通过差分电流平衡器(DCB)电路进行调节。本文分析了 DCB 电路在宽输入信号电平范围内校正相位(增益)不平衡的性能,并通过电路仿真验证了其准确性。为了说明相位误差/增益误差(PE/GE)校正,在 180 纳米 CMOS 工艺中设计并仿真了 30-40GHz DCB 电路。该 DCB 在输入 PE(Δ𝜃A) 为 -20∘≤Δ𝜃A≤+20∘ 和输入 GE(GA) 为 -2dB≤20∗log(1+GA)≤+2dB 时进行检验。分析和仿真表明,在 20-50GHz 频率范围内,输出相位误差 (OPEDCB) 为 -10∘≤OPE DCB≤+2∘ ,输出增益误差 (OGEDCB) 为 -1dB≤OGEDCB≤+1.5dB 。用于 PE(GE)补偿的 DCB 电路的结果与相位校正技术(PCT)电路的结果进行了比较,结果表明 DCB 电路的相位(增益)不平衡校正效果更佳,NF 和直流功耗更低。
{"title":"Analysis and Simulation of Current Balancer Circuit for Phase-Gain Correction of Unbalanced Differential Signals","authors":"Zainab Baharvand, Abdolreza Nabavi, Habibollah Zolfkhani","doi":"10.1142/s021812662450244x","DOIUrl":"https://doi.org/10.1142/s021812662450244x","url":null,"abstract":"&lt;p&gt;The phase and gain imbalance of a balun output can be adjusted by a differential current balancer (DCB) circuit. The performance of DCB circuit, for correcting the phase (gain) imbalance, is analyzed for a wide range of input signal level, and the accuracy is verified with circuit simulation. To illustrate the phase-error/gain-error (PE/GE) correction, a 30–40&lt;span&gt;&lt;math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mspace width=\".17em\"&gt;&lt;/mspace&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;GHz DCB circuit is designed and simulated in a 180-nm CMOS process. The DCB is examined for input PE, &lt;span&gt;&lt;math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi mathvariant=\"normal\"&gt;Δ&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;𝜃&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;, of &lt;span&gt;&lt;math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mo stretchy=\"false\"&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo stretchy=\"false\"&gt;∘&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi mathvariant=\"normal\"&gt;Δ&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;𝜃&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mo stretchy=\"false\"&gt;+&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo stretchy=\"false\"&gt;∘&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; and input GE, G&lt;sub&gt;&lt;i&gt;A&lt;/i&gt;&lt;/sub&gt;, of &lt;span&gt;&lt;math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mo stretchy=\"false\"&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mspace width=\".17em\"&gt;&lt;/mspace&gt;&lt;mstyle&gt;&lt;mtext mathvariant=\"normal\"&gt;dB&lt;/mtext&gt;&lt;/mstyle&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo stretchy=\"false\"&gt;∗&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;log&lt;/mo&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo stretchy=\"false\"&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mo stretchy=\"false\"&gt;+&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;&lt;span&gt;&lt;math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mspace width=\".17em\"&gt;&lt;/mspace&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;dB. Analysis and simulation illustrate an output phase error &lt;span&gt;&lt;math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mstyle&gt;&lt;mtext mathvariant=\"normal\"&gt;OPE&lt;/mtext&gt;&lt;/mstyle&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mstyle&gt;&lt;mtext mathvariant=\"normal\"&gt;DCB&lt;/mtext&gt;&lt;/mstyle&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; of &lt;span&gt;&lt;math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mo stretchy=\"false\"&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo stretchy=\"false\"&gt;∘&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mstyle&gt;&lt;mtext mathvariant=\"normal\"&gt;OPE&lt;/mtext&gt;&lt;/mstyle&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mstyle&gt;&lt;mtext mathvariant=\"normal\"&gt; DCB&lt;/mtext&gt;&lt;/mstyle&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mo stretchy=\"false\"&gt;+&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo stretchy=\"false\"&gt;∘&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; and output gain error &lt;span&gt;&lt;math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mstyle&gt;&lt;mtext mathvariant=\"normal\"&gt;OGE&lt;/mtext&gt;&lt;/mstyle&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mstyle&gt;&lt;mtext mathvariant=\"normal\"&gt;DCB&lt;","PeriodicalId":54866,"journal":{"name":"Journal of Circuits Systems and Computers","volume":"87 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140322115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Image Classification Method Based on Multi-Scale Convolutional Neural Network 基于多尺度卷积神经网络的图像分类方法
IF 1.5 4区 工程技术 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2024-03-27 DOI: 10.1142/s021812662450186x
Shaobo Du, Jing Li

Traditional convolutional neural networks (CNNs) typically use fixed scale convolutional kernels for feature extraction when processing image classification tasks, while ignoring the multi-scale information present in the image. To overcome this limitation, we propose an algorithm based on multi-scale CNNs, which capture features at different levels by introducing convolutional kernels of different scales into the convolutional layer. In this study, we first designed a multi-scale convolutional layer consisting of multiple convolutional kernels of different scales to extract multi-scale features of the image. To further enhance classification performance, we introduced a multi-scale feature fusion module that can effectively fuse features of different scales and classify them through a fully connected layer. Then we conducted extensive experiments on several commonly used image classification datasets. The experimental results show that this network can not only effectively identify and locate hyperspectral image targets in different scenarios, but also reduce missed detections and false positives during the detection process. The average accuracy of the improved model has been improved, and the recognition accuracy of some small markers affected by external factors such as occlusion and lighting has also been improved. In addition, by comparing the detection effect of a single image, the progressiveness and anti-leakage ability of the improved model are proved. The image classification method based on multi-scale CNNs has broad application prospects in image recognition and feature extraction, and can provide valuable reference and reference for research in related fields.

传统的卷积神经网络(CNN)在处理图像分类任务时,通常使用固定尺度的卷积核进行特征提取,而忽略了图像中存在的多尺度信息。为了克服这一局限,我们提出了一种基于多尺度 CNN 的算法,通过在卷积层中引入不同尺度的卷积核来捕捉不同层次的特征。在这项研究中,我们首先设计了一个由多个不同尺度卷积核组成的多尺度卷积层,以提取图像的多尺度特征。为了进一步提高分类性能,我们引入了多尺度特征融合模块,该模块能有效融合不同尺度的特征,并通过全连接层进行分类。然后,我们在几个常用的图像分类数据集上进行了大量实验。实验结果表明,该网络不仅能有效识别和定位不同场景下的高光谱图像目标,还能减少检测过程中的漏检和误报。改进后模型的平均准确率得到了提高,一些受遮挡和光照等外部因素影响的小标记的识别准确率也得到了提高。此外,通过对比单幅图像的检测效果,证明了改进模型的渐进性和抗泄漏能力。基于多尺度 CNN 的图像分类方法在图像识别和特征提取方面具有广阔的应用前景,可为相关领域的研究提供有价值的参考和借鉴。
{"title":"Image Classification Method Based on Multi-Scale Convolutional Neural Network","authors":"Shaobo Du, Jing Li","doi":"10.1142/s021812662450186x","DOIUrl":"https://doi.org/10.1142/s021812662450186x","url":null,"abstract":"<p>Traditional convolutional neural networks (CNNs) typically use fixed scale convolutional kernels for feature extraction when processing image classification tasks, while ignoring the multi-scale information present in the image. To overcome this limitation, we propose an algorithm based on multi-scale CNNs, which capture features at different levels by introducing convolutional kernels of different scales into the convolutional layer. In this study, we first designed a multi-scale convolutional layer consisting of multiple convolutional kernels of different scales to extract multi-scale features of the image. To further enhance classification performance, we introduced a multi-scale feature fusion module that can effectively fuse features of different scales and classify them through a fully connected layer. Then we conducted extensive experiments on several commonly used image classification datasets. The experimental results show that this network can not only effectively identify and locate hyperspectral image targets in different scenarios, but also reduce missed detections and false positives during the detection process. The average accuracy of the improved model has been improved, and the recognition accuracy of some small markers affected by external factors such as occlusion and lighting has also been improved. In addition, by comparing the detection effect of a single image, the progressiveness and anti-leakage ability of the improved model are proved. The image classification method based on multi-scale CNNs has broad application prospects in image recognition and feature extraction, and can provide valuable reference and reference for research in related fields.</p>","PeriodicalId":54866,"journal":{"name":"Journal of Circuits Systems and Computers","volume":"13 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140322548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Low-Power Fully Differential Level-Crossing ADC Based on Single-Reference Comparator for Wireless Medical Implantable Devices 基于单参考比较器的低功耗全差分电平交叉 ADC,用于无线医疗植入式设备
IF 1.5 4区 工程技术 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2024-03-26 DOI: 10.1142/s0218126624502414
Behnam Yazdani, Shahin Jafarabadi Ashtiani

This paper introduces a low-power fully differential fixed window level-crossing analog-to-digital converter (LC-ADC) for wireless medical implantable devices. The LC-ADC could be an excellent candidate for low-power systems due to the reduction of sampling points for bio-potential signals. Different from existing fixed window LC-ADCs, which use a 1-bit DAC or scaler and two reference levels to move the input signal to the comparison window, a simplified scheme is proposed in which the DAC or scaler is removed and a single-reference level is used to create the comparison window. The proposed LC-ADC utilizes a single-reference comparator, which leads to a simplified implementation and significant reduction in power consumption and circuit area. In addition, using a single reference level and removing DAC, leads to a decrease in the complexity of the controlling logic. The proposed LC-ADC is simulated in 0.18μm CMOS technology. The simulation results achieve an effective number of bits (ENOB) of up to 6.5 bits with about 59–141 nW power consumption under 0.8V supply and input signal bandwidth from 5Hz to 4kHz.

本文介绍了一种用于无线医疗植入设备的低功耗全差分固定窗口电平转换模数转换器(LC-ADC)。由于减少了生物电位信号的采样点,LC-ADC 成为低功耗系统的理想选择。现有的固定窗口 LC-ADC 使用 1 位 DAC 或缩放器和两个参考电平将输入信号移动到比较窗口,与此不同,我们提出了一种简化方案,即去掉 DAC 或缩放器,使用单参考电平创建比较窗口。拟议的 LC-ADC 采用单参考比较器,从而简化了实现过程,并显著降低了功耗和电路面积。此外,使用单参考电平和取消 DAC 还降低了控制逻辑的复杂性。我们采用 0.18μm CMOS 技术对所提出的 LC-ADC 进行了仿真。仿真结果表明,在 0.8V 电源和 5Hz 至 4kHz 输入信号带宽条件下,有效位数 (ENOB) 高达 6.5 位,功耗约为 59-141 nW。
{"title":"A Low-Power Fully Differential Level-Crossing ADC Based on Single-Reference Comparator for Wireless Medical Implantable Devices","authors":"Behnam Yazdani, Shahin Jafarabadi Ashtiani","doi":"10.1142/s0218126624502414","DOIUrl":"https://doi.org/10.1142/s0218126624502414","url":null,"abstract":"<p>This paper introduces a low-power fully differential fixed window level-crossing analog-to-digital converter (LC-ADC) for wireless medical implantable devices. The LC-ADC could be an excellent candidate for low-power systems due to the reduction of sampling points for bio-potential signals. Different from existing fixed window LC-ADCs, which use a 1-bit DAC or scaler and two reference levels to move the input signal to the comparison window, a simplified scheme is proposed in which the DAC or scaler is removed and a single-reference level is used to create the comparison window. The proposed LC-ADC utilizes a single-reference comparator, which leads to a simplified implementation and significant reduction in power consumption and circuit area. In addition, using a single reference level and removing DAC, leads to a decrease in the complexity of the controlling logic. The proposed LC-ADC is simulated in 0.18<span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span><span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>μ</mi></math></span><span></span>m CMOS technology. The simulation results achieve an effective number of bits (ENOB) of up to 6.5 bits with about 59–141 nW power consumption under 0.8<span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>V supply and input signal bandwidth from 5<span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>Hz to 4<span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>kHz.</p>","PeriodicalId":54866,"journal":{"name":"Journal of Circuits Systems and Computers","volume":"1 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140323934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced Authentication and Energy-Efficient Routing Protocol for Wireless Body Area Networks 无线体域网络的高级认证和节能路由协议
IF 1.5 4区 工程技术 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2024-03-25 DOI: 10.1142/s0218126624502396
Padma Vijetha Dev Bakkaiahgari, K. Venkata Prasad

Recently, wireless body area network (WBAN) becomes a hot research topic in the advanced healthcare system. The WBAN plays a vital role in monitoring the physiological parameters of the human body with sensors. The sensors are small in size, and it has a small-sized battery with limited life. Hence, the energy is limited in the multi-hop routing process. The patient data is collected by the sensor, and the data are transmitted with high energy consumption. It causes failure in the data transmission path. To avoid this, the data transmission process should be optimized. This paper presents an advanced authentication and energy-efficient routing protocol (AAERP) for optimal routing paths in WBAN. Patients’ data are aggregated from the WBAN through the IoMT devices in the initial stage. To secure the patient’s private data, a hybrid mechanism of the elliptic curve cryptosystem (ECC) and Paillier cryptosystem is proposed for the data encryption process. Data security is improved by authenticating the data before transmission using an encryption algorithm. Before the routing process, the data encryption approach converts the original plain text data into ciphertext data. This encryption approach assists in avoiding intrusions in the network system. The encrypted data are optimally routed with the help of the teamwork optimization algorithm (TOA) approach. The optimal path selection using this optimization technique improves the effectiveness and robustness of the system. The experimental setup is performed by using Python software. The efficacy of the proposed model is evaluated by solving parameters like network lifetime, network throughput, residual energy, success rate, number of packets received, number of packets sent, and number of packets dropped. The performance of the proposed model is measured by comparing the obtained results with several existing models.

最近,无线体域网(WBAN)成为先进医疗保健系统中的一个热门研究课题。WBAN 在利用传感器监测人体生理参数方面发挥着重要作用。传感器体积小,电池体积小,寿命有限。因此,在多跳路由过程中,能量是有限的。传感器收集病人数据,传输数据时需要消耗大量能量。这会导致数据传输路径出现故障。为避免这种情况,应优化数据传输过程。本文提出了一种高级认证和节能路由协议(AAERP),用于优化无线局域网中的路由路径。病人的数据在初始阶段通过 IoMT 设备从 WBAN 聚合。为确保患者私人数据的安全,提出了一种椭圆曲线密码系统(ECC)和 Paillier 密码系统的混合机制,用于数据加密过程。通过在传输前使用加密算法验证数据,提高了数据的安全性。在路由过程之前,数据加密方法将原始明文数据转换为密文数据。这种加密方法有助于避免网络系统受到入侵。在团队合作优化算法(TOA)方法的帮助下,加密数据被优化路由。利用这种优化技术进行的最优路径选择提高了系统的有效性和鲁棒性。实验设置通过 Python 软件进行。通过解决网络寿命、网络吞吐量、剩余能量、成功率、接收数据包数量、发送数据包数量和丢弃数据包数量等参数,对所提模型的功效进行评估。通过将获得的结果与现有的几个模型进行比较,衡量了所提模型的性能。
{"title":"Advanced Authentication and Energy-Efficient Routing Protocol for Wireless Body Area Networks","authors":"Padma Vijetha Dev Bakkaiahgari, K. Venkata Prasad","doi":"10.1142/s0218126624502396","DOIUrl":"https://doi.org/10.1142/s0218126624502396","url":null,"abstract":"<p>Recently, wireless body area network (WBAN) becomes a hot research topic in the advanced healthcare system. The WBAN plays a vital role in monitoring the physiological parameters of the human body with sensors. The sensors are small in size, and it has a small-sized battery with limited life. Hence, the energy is limited in the multi-hop routing process. The patient data is collected by the sensor, and the data are transmitted with high energy consumption. It causes failure in the data transmission path. To avoid this, the data transmission process should be optimized. This paper presents an advanced authentication and energy-efficient routing protocol (AAERP) for optimal routing paths in WBAN. Patients’ data are aggregated from the WBAN through the IoMT devices in the initial stage. To secure the patient’s private data, a hybrid mechanism of the elliptic curve cryptosystem (ECC) and Paillier cryptosystem is proposed for the data encryption process. Data security is improved by authenticating the data before transmission using an encryption algorithm. Before the routing process, the data encryption approach converts the original plain text data into ciphertext data. This encryption approach assists in avoiding intrusions in the network system. The encrypted data are optimally routed with the help of the teamwork optimization algorithm (TOA) approach. The optimal path selection using this optimization technique improves the effectiveness and robustness of the system. The experimental setup is performed by using Python software. The efficacy of the proposed model is evaluated by solving parameters like network lifetime, network throughput, residual energy, success rate, number of packets received, number of packets sent, and number of packets dropped. The performance of the proposed model is measured by comparing the obtained results with several existing models.</p>","PeriodicalId":54866,"journal":{"name":"Journal of Circuits Systems and Computers","volume":"17 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140300511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Power Quality (PQ) Analyses of DG Utilizing Unified Power Quality Conditioner (UPQC) by White Shark Optimizer and Recalling-Enhanced Recurrent Neural Network 利用白鲨优化器和回忆增强型循环神经网络对使用统一电能质量调节器 (UPQC) 的 DG 进行电能质量 (PQ) 分析
IF 1.5 4区 工程技术 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2024-03-21 DOI: 10.1142/s021812662450227x
Chapala Shravani, R. L Narasimham2, G Tulasi Ram Das3

This paper proposes a novel hybrid technique for enhancing power quality (PQ) in distributed generation (DG) systems by deploying a unified power quality conditioner (UPQC). Here, the proposed hybrid method is the joint execution of white shark optimizer (WSO) and recalling-enhanced recurrent neural network (RERNN), called the WSO-RERNN technique. The primary objective of this novel approach is to effectively mitigate voltage sag and reduce voltage harmonics under varying load conditions. It is important to investigate the voltage sag, swell and harmonic distortion of the system to obtain an enhanced PQ of the energy supply. Therefore, this paper shows the brief impact of PQ in DG utilizing the proposed unified PQ conditioner controller. The WSO-RERNN control technique enhances the performance of the UPQC controller by providing the optimal control signal. By then, the efficiency of the proposed approach is done in MATLAB, and the performance is compared with those of existing optimization techniques, including Ant Lion Optimizer (ALO), Grey wolf optimization (GWO) and Salp swarm algorithm (SSA) methods.

本文提出了一种新型混合技术,通过部署统一电能质量调节器(UPQC)来提高分布式发电(DG)系统的电能质量(PQ)。本文提出的混合方法是联合执行白鲨优化器(WSO)和回忆增强型递归神经网络(RERNN),称为 WSO-RERNN 技术。这种新方法的主要目标是在不同负载条件下有效缓解电压骤降并减少电压谐波。研究系统的电压下陷、电压膨胀和谐波畸变对提高能源供应的 PQ 非常重要。因此,本文利用提出的统一 PQ 调节器控制器简要说明了 PQ 对 DG 的影响。WSO-RERNN 控制技术通过提供最优控制信号来增强 UPQC 控制器的性能。然后,在 MATLAB 中对所提方法的效率进行了测试,并将其性能与现有优化技术(包括蚁狮优化器 (ALO)、灰狼优化 (GWO) 和 Salp 蜂群算法 (SSA) 方法)进行了比较。
{"title":"Power Quality (PQ) Analyses of DG Utilizing Unified Power Quality Conditioner (UPQC) by White Shark Optimizer and Recalling-Enhanced Recurrent Neural Network","authors":"Chapala Shravani, R. L Narasimham2, G Tulasi Ram Das3","doi":"10.1142/s021812662450227x","DOIUrl":"https://doi.org/10.1142/s021812662450227x","url":null,"abstract":"<p>This paper proposes a novel hybrid technique for enhancing power quality (PQ) in distributed generation (DG) systems by deploying a unified power quality conditioner (UPQC). Here, the proposed hybrid method is the joint execution of white shark optimizer (WSO) and recalling-enhanced recurrent neural network (RERNN), called the WSO-RERNN technique. The primary objective of this novel approach is to effectively mitigate voltage sag and reduce voltage harmonics under varying load conditions. It is important to investigate the voltage sag, swell and harmonic distortion of the system to obtain an enhanced PQ of the energy supply. Therefore, this paper shows the brief impact of PQ in DG utilizing the proposed unified PQ conditioner controller. The WSO-RERNN control technique enhances the performance of the UPQC controller by providing the optimal control signal. By then, the efficiency of the proposed approach is done in MATLAB, and the performance is compared with those of existing optimization techniques, including Ant Lion Optimizer (ALO), Grey wolf optimization (GWO) and Salp swarm algorithm (SSA) methods.</p>","PeriodicalId":54866,"journal":{"name":"Journal of Circuits Systems and Computers","volume":"14 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140203353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Time Domain and Area Efficient Smart Temperature Sensor Exploiting Channel Length Modulation Coefficient 利用信道长度调制系数的时域和面积高效智能温度传感器
IF 1.5 4区 工程技术 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2024-03-18 DOI: 10.1142/s0218126624502384
Kuntal Chakraborty, Alak Majumder, Abir J Mondal

This work suggests an all-digital temperature sensor with a high sampling rate that is based on a time-to-digital converter (TDC). Two on-chip voltage-controlled oscillators (VCOs) are used in the design of the sensor core, which senses temperatures between 40C and 200C. For digital code conversion, the outputs of the VCO are fed into two asynchronous counters. In both low- and high- resolution modes, the error following two-point calibration is observed between 1.08C and +1.06C. The sensor’s ability to function in both high- and low-resolution modes based on conversion time is an important feature. At a sampling frequency of 0.19MHz, the maximum resolution achieved is 0.18C. Additionally, the sensor has control logic built in to turn off the sensing as soon as the conversion is complete. At 90-nm process, 1.1V supply voltage and 27C, the proposed sensor occupies 0.044mm2 and consumes 817.5μW.

这项研究提出了一种基于时间数字转换器(TDC)的高采样率全数字温度传感器。传感器内核的设计采用了两个片上压控振荡器 (VCO),可检测 -40∘C 至 200∘C 之间的温度。在数字代码转换时,VCO 的输出被送入两个异步计数器。在低分辨率和高分辨率模式下,两点校准后的误差在 -1.08∘C 和 +1.06∘C 之间。该传感器的一个重要特点是能够根据转换时间在高分辨率和低分辨率模式下工作。在采样频率为 0.19MHz 时,最大分辨率可达 0.18∘C。此外,传感器还内置了控制逻辑,可在转换完成后立即关闭传感功能。在 90 纳米工艺、1.1V 电源电压和 27∘C 温度条件下,拟议的传感器占地面积为 0.044 平方毫米,功耗为 817.5 微瓦。
{"title":"Time Domain and Area Efficient Smart Temperature Sensor Exploiting Channel Length Modulation Coefficient","authors":"Kuntal Chakraborty, Alak Majumder, Abir J Mondal","doi":"10.1142/s0218126624502384","DOIUrl":"https://doi.org/10.1142/s0218126624502384","url":null,"abstract":"<p>This work suggests an all-digital temperature sensor with a high sampling rate that is based on a time-to-digital converter (TDC). Two on-chip voltage-controlled oscillators (VCOs) are used in the design of the sensor core, which senses temperatures between <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">−</mo><mn>4</mn><msup><mrow><mn>0</mn></mrow><mrow><mo stretchy=\"false\">∘</mo></mrow></msup></math></span><span></span>C and 200<span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow></mrow><mrow><mo stretchy=\"false\">∘</mo></mrow></msup></math></span><span></span>C. For digital code conversion, the outputs of the VCO are fed into two asynchronous counters. In both low- and high- resolution modes, the error following two-point calibration is observed between <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">−</mo><mn>1</mn><mo>.</mo><mn>0</mn><msup><mrow><mn>8</mn></mrow><mrow><mo stretchy=\"false\">∘</mo></mrow></msup></math></span><span></span>C and <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">+</mo><mn>1</mn><mo>.</mo><mn>0</mn><msup><mrow><mn>6</mn></mrow><mrow><mo stretchy=\"false\">∘</mo></mrow></msup></math></span><span></span>C. The sensor’s ability to function in both high- and low-resolution modes based on conversion time is an important feature. At a sampling frequency of 0.19<span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>MHz, the maximum resolution achieved is 0.18<span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow></mrow><mrow><mo stretchy=\"false\">∘</mo></mrow></msup></math></span><span></span>C. Additionally, the sensor has control logic built in to turn off the sensing as soon as the conversion is complete. At 90-nm process, 1.1<span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>V supply voltage and 27<span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow></mrow><mrow><mo stretchy=\"false\">∘</mo></mrow></msup></math></span><span></span>C, the proposed sensor occupies <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mn>0</mn><mo>.</mo><mn>0</mn><mn>4</mn><mn>4</mn><mspace width=\".17em\"></mspace><msup><mrow><mstyle><mtext mathvariant=\"normal\">mm</mtext></mstyle></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span> and consumes <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mn>8</mn><mn>1</mn><mn>7</mn><mo>.</mo><mn>5</mn><mspace width=\".17em\"></mspace><mi>μ</mi><mspace width=\".17em\"></mspace><mstyle><mtext mathvariant=\"normal\">W</mtext></mstyle></math></span><span></span>.</p>","PeriodicalId":54866,"journal":{"name":"Journal of Circuits Systems and Computers","volume":"160 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140168082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Deep Neural Network-Fused Mathematical Modeling Approach for Reliable Flight Control of Small Unmanned Aerial Vehicles 用于小型无人飞行器可靠飞行控制的深度神经网络融合数学建模方法
IF 1.5 4区 工程技术 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2024-03-14 DOI: 10.1142/s0218126624502360
Gang Xu, Weibin Su, Mingbo Pan, Yikai Wang, Zhengfang He, Jiarui Dong, Jiangzheng Zhao

In order to ensure the flight safety of small unmanned aerial vehicles (UAVs), a deep neural network-fused mathematical modeling approach is put up for reliable flight control of small UAVs. First, engine torque, thrust eccentricity and initial stop angle are taken into full consideration. A six-degree-of-freedom nonlinear model is formulated for small UAVs, concerning both ground taxiing and air flight status. Then, the model was linearized using the principle of small disturbances. The linearized model expressions for both ground taxiing and air flight were provided. In addition, radial basis function neural networks are used for online approximation to address the nonlinearity and uncertainty caused by changes in aircraft aerodynamic parameters. At the same time, to compensate for the external disturbance and the approximation error of the neural network, the system robustness is improved by selecting reasonable design parameters. This helps the whole flight control system obtain better tracking control performance. At last, some simulation experiments are carried out to evaluate the performance of the proposed mathematical modeling framework. The simulation results show that the proposal has stronger convergence ability, smaller prediction error, and better performance. Thus, proper proactivity can be acknowledged.

为了确保小型无人飞行器(UAV)的飞行安全,本文提出了一种融合深度神经网络的数学建模方法,用于小型无人飞行器的可靠飞行控制。首先,充分考虑了发动机扭矩、推力偏心和初始停止角。针对小型无人机的地面滑行和空中飞行状态,建立了六自由度非线性模型。然后,利用小扰动原理将模型线性化。提供了地面滑行和空中飞行的线性化模型表达式。此外,还使用径向基函数神经网络进行在线逼近,以解决飞机气动参数变化引起的非线性和不确定性问题。同时,为了补偿外部干扰和神经网络的近似误差,通过选择合理的设计参数来提高系统的鲁棒性。这有助于整个飞行控制系统获得更好的跟踪控制性能。最后,还进行了一些仿真实验来评估所提出的数学建模框架的性能。仿真结果表明,该建议具有更强的收敛能力、更小的预测误差和更好的性能。因此,适当的主动性可以得到认可。
{"title":"A Deep Neural Network-Fused Mathematical Modeling Approach for Reliable Flight Control of Small Unmanned Aerial Vehicles","authors":"Gang Xu, Weibin Su, Mingbo Pan, Yikai Wang, Zhengfang He, Jiarui Dong, Jiangzheng Zhao","doi":"10.1142/s0218126624502360","DOIUrl":"https://doi.org/10.1142/s0218126624502360","url":null,"abstract":"<p>In order to ensure the flight safety of small unmanned aerial vehicles (UAVs), a deep neural network-fused mathematical modeling approach is put up for reliable flight control of small UAVs. First, engine torque, thrust eccentricity and initial stop angle are taken into full consideration. A six-degree-of-freedom nonlinear model is formulated for small UAVs, concerning both ground taxiing and air flight status. Then, the model was linearized using the principle of small disturbances. The linearized model expressions for both ground taxiing and air flight were provided. In addition, radial basis function neural networks are used for online approximation to address the nonlinearity and uncertainty caused by changes in aircraft aerodynamic parameters. At the same time, to compensate for the external disturbance and the approximation error of the neural network, the system robustness is improved by selecting reasonable design parameters. This helps the whole flight control system obtain better tracking control performance. At last, some simulation experiments are carried out to evaluate the performance of the proposed mathematical modeling framework. The simulation results show that the proposal has stronger convergence ability, smaller prediction error, and better performance. Thus, proper proactivity can be acknowledged.</p>","PeriodicalId":54866,"journal":{"name":"Journal of Circuits Systems and Computers","volume":"22 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140151356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Circuits Systems and Computers
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1